Inner Product Similarity Join Thomas D. Ahle, Rasmus Pagh, Ilya Razenshteyn, Francesco Silvestri

Problem definition

Exact IPS Join	c,s-Approx. Signed (c-join)	c-Approx. Unsigned
Given P, $Q \subseteq \mathbb{R}^n$	Given P, $Q \subseteq \mathbb{R}^n$	Given P, $Q \subseteq \mathbb{R}^n$
find all $x \in P, y \in Q$	find $x \in P, y \in Q$	find $x \in P$, $y \in Q$
st. $x^T y > s$	st. $x^T y > cs$	st. lx ^T yl > cs

when it is guaranteed that a pair exists with inner product at least s > cs > 0

when it is guaranteed that a pair exists with absolute inner product at least s > cs

Main Theorem

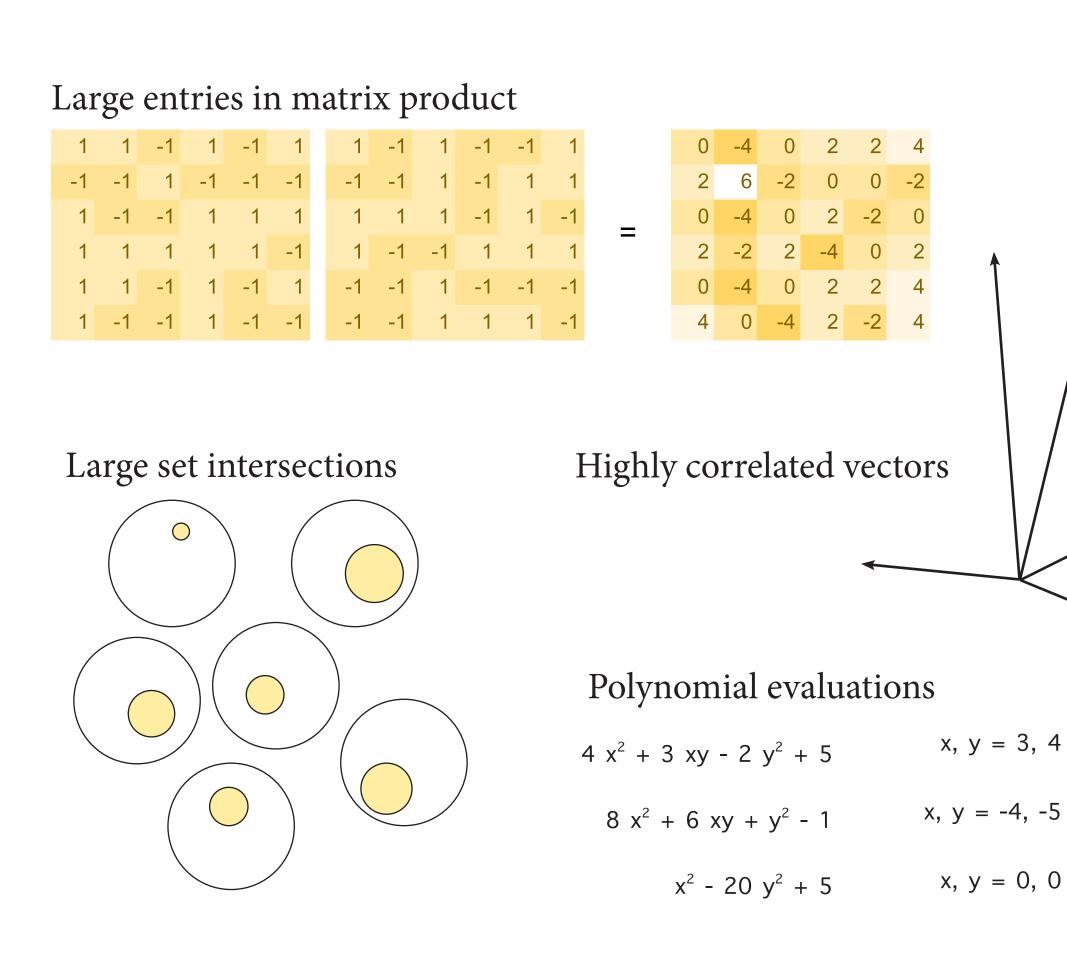
There are no subquadratic algorithms for any of the following problems:

- 1. Signed c-join for c > 0
- 2. Unsigned c-join for $c = e^{-o(\sqrt{\log n/\log\log n})}$
- 3. c-join of P, Q \subseteq {0, 1}^d for c = 1 o(1)

4. Unsigned c-join for $\log(cs)/\log(s) = 1 - o(1/\sqrt{\log n})$ 5. c-join of P, Q \subseteq {0, 1}^d for log(cs)/log(s) = 1 - o(1/logn)

Hardness in P "Understand hardness by reducing to well known hard problems"

• 3SUM: Given a set S of n integers, are there a,b,c 2 S with a+b+c = 0?



Upper bounds - Exact IPS join

• Probabilistic Polynomials: $n^{2-1/O(clog2c)}$ for P, Q $\subseteq \{0,1\}^{clogn}$ [Alman, Williams, FOCS 15]

• Orthogonal vectors: Given a set S of n vectors in $\{0,1\}^d$, for d = O(log n) are there x, y \in S with $x^Ty = 0$?

• All pairs shortest paths (APSP): given a weighted graph, find the distance between every two nodes.

Orthogonal Vectors Conjecture

2

3

No algorithm solves OV in time $O(n^{2-\epsilon})$ for $\epsilon > 0$

Proof Idea

We study embeddings f, g : $\{0,1\}^{d_1} \rightarrow \mathbb{R}^{d_2}$ "Make an embedding" so for every x, $y \in \{0,1\}^{d_1}$ $|f(x)^T g(y)| \le cs$, if $x^T y \ge 1$ $|f(x)^T g(y)| \ge s$, if $x^T y = 0$

Make sure d2 (and the embedding time) is $n^{o(1)}$

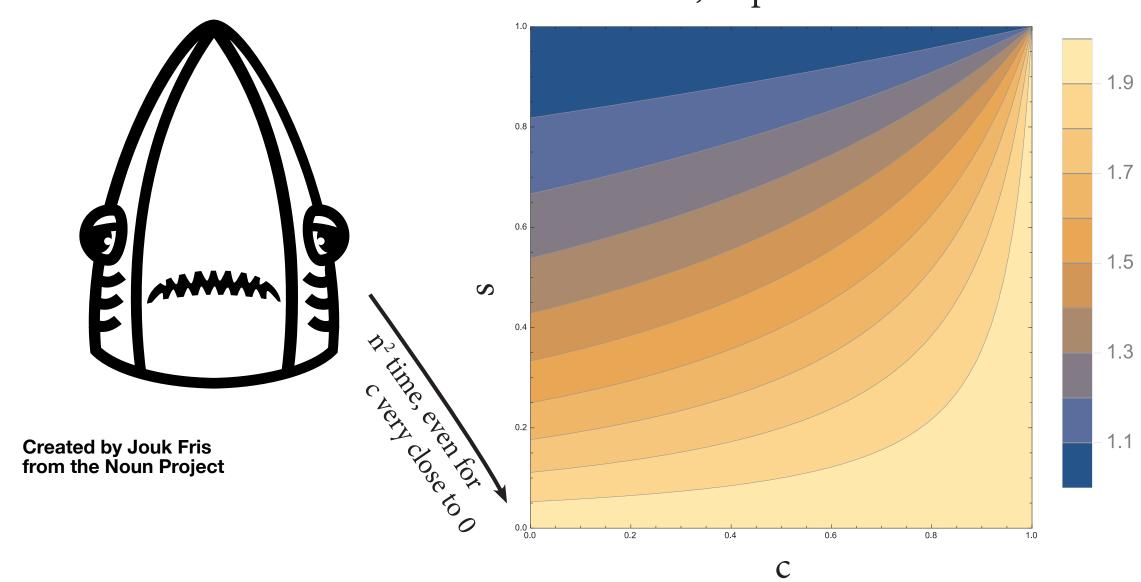
"Apply the embedding"

You've shown that unless OVP is false, there is no algorithm for unsigned (s,cs) join running in time $d^{O(1)} n^{2-\epsilon}$

"Solve OVP"

Upper bounds - Approximate

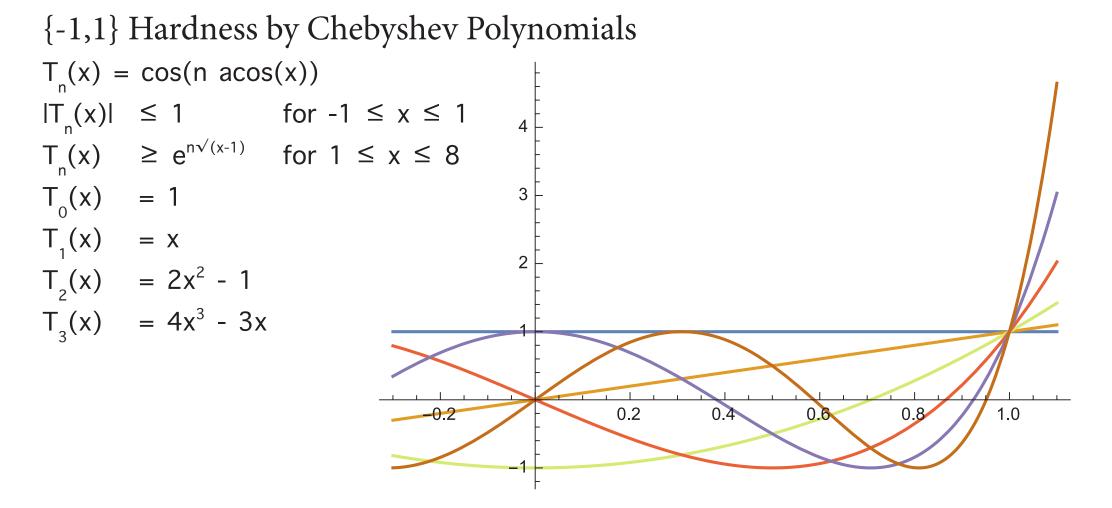
- Data Dependent LSH: n^{1+(1-s)/(1+s-2cs)} [Andoni, Razenshteyn STOC 15]
- Matrix multiplication: n^{4/(3-log s/log cs)} [Karppa, Kaski, Kohonen, SODA 16]
- Sketching: For every $2 \le \kappa \le \infty$ there exists a distribution over $O(n^{1-2/\kappa}) \times n$ matrices Π such that for every $x \in \mathbb{R}^n$ one has: $\Pr_{\Pi}[(1-c)||x||_{k} \leq ||\Pi x||_{k} \leq (1+c)||x||_{k}] \geq$ 0.99 [Andoni 10]



Assuming $\omega = 2$

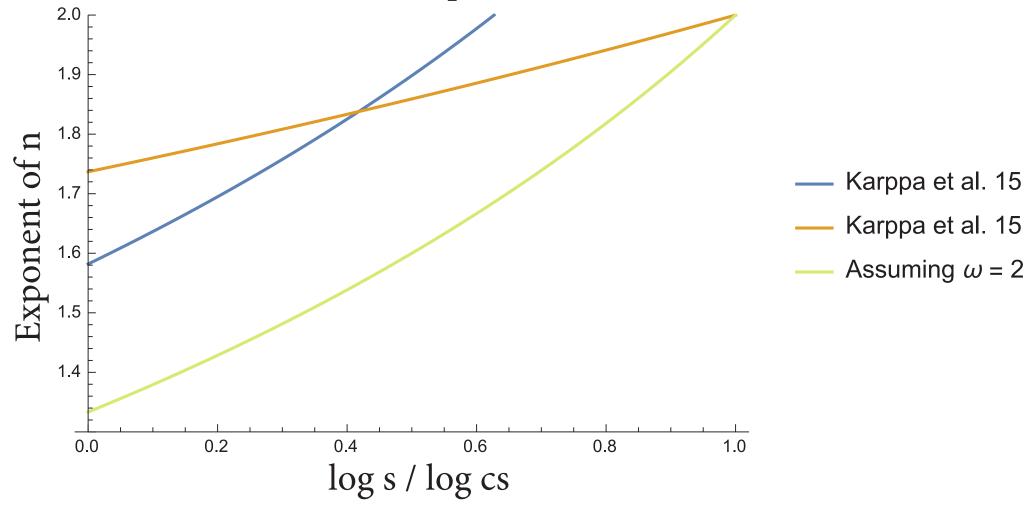
Simple embedding: showing $c > 0$ is impossible for the unsigned join				
Take, coordinate wise		For vectors take		
f(0) := (1, -1, -1)	g(0) := (1, 1, -1)	$f(x) = f(x_1) \dots f(x_n)$) 1 ^{d-4}	
f(1) := (1, 1, 1)	g(1) := (-1, -1, -1)	$g(x) = g(x_1) \dots g(x_n)$	$x_n) (-1)^{d-4}$	
Then		Such that		
$f(1)^{T}g(1) = -3$		$f(x)^{T}g(y) \leq 0,$	if $x^T y \ge 1$	
$f(0)^{T}g(1) = f(1)^{T}g(0) = f(0)^{T}g(0) = 1$		$f(x)^{T}g(y) = 4,$	if $x^T y = 0$	

For the other results, we use polynomial embeddings ~ [Valiant, FOCS 12]



{0,1} Hardness by truncated product construction $T(x) = (1 - x_1 y_1) \dots (1 - x_k y_k) + (1 - x_{k+1} y_{k+1}) \dots (1 - x_{2k} y_{2k}) + \dots$

Matrix multiplication



Other results

• Hardness for datastructures, via reduction through assymetric OVP. • Lower bound for LSH, "p1 - p2 = $0(\sqrt{s})''$. • Elimination of assymetry via error correcting codes.

• Get tighter bounds. Can we disprove subquadratic running time for logs/logcs = 1-eps? • Prove or disprove separation between {-1,1} and {0,1} cases. • Reconsile LSH and Matrix Multiplication methods.

Future work