Oblivious Sketching of High-Degree Polynomial Kernels

Thomas Ahle ITU

Michael Kapralov EPFL

Jakob Knudsen
Univ. of Copenhagen

Rasmus Pagh
ITU

Ameya Velingker David Woodruff
Google AI
CMU
Amir Zandieh EPFL

ㄷ D ㄷ Carnegie Mellon University

IT-UNIVERSITETET I KØBENHAVN

Oblivious Sketching of High-Degree Polynomial Kernels

Thomas Ahle
ITU

Mich nger Google AI

David Woodruff CMU

Jakob Knudsen
Univ. of Copenhagen

Rasmus Pagh
 ITU

Oblivious Sketching of High-Degree Polynomial Kernels

Thomas Ahle ITU

Michael Kapralov EPFL

Jakob Knudsen
Univ. of Conenhagen

Rasmus Pagh
ITU

Ameya Velingker David Woodruff Amir Zandieh Google AI
CMU

Carnegie Mellon University
Google AI

Kernel Methods

- Widely used in kernel-based learning, statistics, and control
- Classical machine learning tool with real-world applications

Real-World Applications of Kernel Methods

- Hyperparameter tuning of deep neural networks: e.g. Google Vizier
- Multi-Armed Bandit Optimization [Srinivas, Krause, Kakade, Seeger' 09]
- Neural Tangent Kernel: The evolution of a neural network during training can be described by kernel methods [Jacot, Gabriel, Hongler'18]

Kernel Methods

- Learn a nonlinear function $f: \mathcal{R}^{d} \rightarrow \mathcal{R}$ from noisy samples

$$
\gamma_{i}=f\left(x_{i}\right)+\epsilon_{i} \text { for } i=1,2, \ldots n
$$

- ϵ_{i} are iid Gaussian noise with zero mean and variance λ
- Kernel Ridge Regression is a simple and yet powerful solution

Kernel Methods

- Learn a nonlinear function $f: \mathcal{R}^{d} \rightarrow \mathcal{R}$ from noisy samples

$$
\gamma_{i}=f\left(x_{i}\right)+\epsilon_{i} \text { for } i=1,2, \ldots n
$$

- ϵ_{i} are iid Gaussian noise with zero mean and variance λ
- Kernel Ridge Regression is a simple and yet powerful solution
- If $f(\cdot)$ is a GP with covariance $k: \mathcal{R}^{d} \times \mathcal{R}^{d} \rightarrow \mathcal{R}$, then the optimal estimator is,

$$
\begin{gathered}
\tilde{f}(x)=\sum_{i=1}^{n} \alpha_{i} k\left(x, x_{i}\right) \\
\alpha=\operatorname{argmin}_{\beta \in \mathbb{R}^{n}}\|\boldsymbol{K} \beta-\gamma\|_{2}^{2}+\lambda \beta^{\top} \boldsymbol{K} \beta
\end{gathered}
$$

Kernel Method

- Kernel methods are expensive

- Computing all kernel entries takes $n \cdot n n z(X)+n^{2}$ time
- Even writing it down takes n^{2} time and memory
- A single iteration of a linear system solver takes n^{2} time
- For $n=100000, K$ has 10 billion entries. Takes 80 GB of storage

Classical Solution: Dimensionality Reduction

- Storing Z uses $O(n s)$ space and computing $Z Z^{\top} \alpha$ takes $O(n s)$ time.
- Orthogonalization, eigen-decomposition, and pseudo-inversion of $Z Z^{\top}$ all take just $O\left(n s^{2}\right)$ time.

Efficient Low-Rank Approximation?

- Direct eigen decomposition, or even approximation via Krylov subspace methods are out of question since they at least require fully forming K

Efficient Low-Rank Approximation?

- Direct eigen decomposition, or even approximation via Krylov subspace methods are out of question since they at least require fully forming K
- Sketching: a powerful approach to speeding up matrix problems
- Our approach: design a sketching solution for kernel low-rank approximation

Feature Space Mapping

- Any positive definite kernel $k: \mathcal{R}^{d} \times \mathcal{R}^{d} \rightarrow \mathcal{R}$ defines a lifting $\varphi: \mathcal{R}^{d} \rightarrow \mathcal{R}^{D}$ such that for all $x, y \in \mathcal{R}^{d}$

$$
k(x, y)=\varphi(x)^{\top} \varphi(y)
$$

- The kernel computes the inner product between the lifted data points

Feature Space Mapping

- Any positive definite kernel $k: \mathcal{R}^{d} \times \mathcal{R}^{d} \rightarrow \mathcal{R}$ defines a lifting $\varphi: \mathcal{R}^{d} \rightarrow \mathcal{R}^{D}$ such that for all $x, y \in \mathcal{R}^{d}$

$$
k(x, y)=\varphi(x)^{\top} \varphi(y)
$$

- The kernel computes the inner product between the lifted data points

$$
K=\boldsymbol{\phi}^{\top} \boldsymbol{\phi},
$$

where $\boldsymbol{\phi}$ is a $D \times n$ matrix whose $i^{\text {th }}$ column is the projection of x_{i} into the feature space $\varphi\left(x_{i}\right)$

Sketching the Feature Space

- Sketch the feature space

$$
K=\boldsymbol{\phi}^{\top} \boldsymbol{\phi} \approx \boldsymbol{\phi}^{\top} \Pi^{\top} \Pi \boldsymbol{\phi}
$$

Sketching the Feature Space

- Sketch the feature space

$$
K=\boldsymbol{\phi}^{\top} \boldsymbol{\phi} \approx \boldsymbol{\phi}^{\top} \Pi^{\top} \Pi \boldsymbol{\phi}
$$

- Challenge: forming the feature matrix $\boldsymbol{\phi}$ explicitly is expensive as the feature space is typically high-dimensional (even infinite-dimensional)

Sketching the Feature Space

- Sketch the feature space

$$
K=\boldsymbol{\phi}^{\top} \boldsymbol{\phi} \approx \boldsymbol{\phi}^{\top} \Pi^{\top} \Pi \boldsymbol{\phi}
$$

- Challenge: forming the feature matrix $\boldsymbol{\phi}$ explicitly is expensive as the feature space is typically high-dimensional (even infinite-dimensional)
- Goal: Design a sketch matrix $\Pi \in \mathcal{R}^{s \times D}$ such that $\Pi \cdot \varphi(x)$ is computable without needing to explicitly form $\varphi(x)$

Kernel Sketching techniques

- The most popular method for kernel sketching is the Fourier Features Method of Rahimi \& Recht (Test of Time Award winner at NeurIPS'17)
- Works for shift invariant kernels, such as Gaussian kernel

$$
\varphi(x)_{\xi}=e^{-2 \pi i \xi^{\top} x} \text { for } \xi \in \mathcal{R}^{d}
$$

- Π : Sampling matrix that samples frequencies ξ from the $\operatorname{pdf} \hat{k}(\xi)$

Kernel Sketching techniques

- The most popular method for kernel sketching is the Fourier Features Method of Rahimi \& Recht (Test of Time Award winner at NeurIPS'17)
- Works for shift invariant kernels, such as Gaussian kernel

$$
\varphi(x)_{\xi}=e^{-2 \pi i \xi^{\top} x} \text { for } \xi \in \mathcal{R}^{d}
$$

- П: Sampling matrix that samples frequencies ξ from the $\operatorname{pdf} \hat{k}(\xi)$
- Avron, Kapralov, Musco, Musco, Velingker, Z.' 17: Tight bounds to get spectral approximation guarantee + Modified Fourier Sampling with optimal number of samples for Gaussian kernel in constant dimension

Kernel Sketching techniques

- The most popular method for kernel sketching is the Fourier Features Method of Rahimi \& Recht (Test of Time Award winner at NeurIPS'17)
- Works for shift invariant kernels, such as Gaussian kernel

$$
\varphi(x)_{\xi}=e^{-2 \pi i \xi^{\top} x} \text { for } \xi \in \mathcal{R}^{d}
$$

- П: Sampling matrix that samples frequencies ξ from the $\operatorname{pdf} \hat{k}(\xi)$
- Avron, Kapralov, Musco, Musco, Velingker, Z.' 17: Tight bounds to get spectral approximation guarantee + Modified Fourier Sampling with optimal number of samples for Gaussian kernel in constant dimension
- Avron, Kapralov, Musco, Musco, Velingker, Z.' 19: Optimal sampling strategy for Sinc kernel in dimension 1

Kernel Sketching techniques

- The most popular method for kernel sketching is the Fourier Features Method of Rahimi \& Recht (Test of Time Award winner at NeurIPS'17)
- Works for shift invariant kernels, such as Gaussian kernel

$$
\varphi(x)_{\xi}=e^{-2 \pi i \xi^{\top} x} \text { for } \xi \in \mathcal{R}^{d}
$$

- П: Samf Works only for shift invariant kernels and $\operatorname{pdf} \hat{k}(\xi)$
- Avron, Ka constant dimensional datasets s to get
spectral optimal number of samples for Gaussian kernel in constant dimension
- Avron, Kapralov, Musco, Musco, Velingker, Z.' 19: Optimal sampling strategy for Sinc kernel in dimension 1

Polynomial Kernel

- In this work we focus on the important case of Polynomial Kernel

$$
k(x, y)=\left(x^{\top} y\right)^{q}
$$

- The lifting function for this kernel is $\varphi(x)=x^{\otimes q}$, where $\varphi(x) \in \mathcal{R}^{d^{q}}$ is defined as $\varphi(x)_{i_{1}, i_{2}, \cdots i_{q}}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{q}}$ for $i_{1}, i_{2}, \cdots i_{q} \in\{1,2, \cdots d\}$

Polynomial Kernel

- In this work we focus on the important case of Polynomial Kernel

$$
k(x, y)=\left(x^{\top} y\right)^{q}
$$

- The lifting function for this kernel is $\varphi(x)=x^{\otimes q}$, where $\varphi(x) \in \mathcal{R}^{d^{q}}$ is defined as $\varphi(x)_{i_{1}, i_{2}, \cdots i_{q}}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{q}}$ for $i_{1}, i_{2}, \cdots i_{q} \in\{1,2, \cdots d\}$
- Goal: design a linear sketch $\Pi \in \mathcal{R}^{s \times d^{q}}$ such that $\Pi x^{\otimes q}$ is efficiently computable without needing to form $x^{\otimes q}$ explicitly

Key Properties of Sketch

- Approximate Matrix Product: for every matrices $A, B \in \mathcal{R}^{d^{q} \times n}$ whp

$$
\left\|A^{\top} \Pi^{\top} \Pi B-A^{\top} B\right\|_{F} \leq \epsilon\|A\|_{F}\|B\|_{F}
$$

- Oblivious Subspace Embedding: for every $\lambda>0$ and every matrix $A \in \mathcal{R}^{d^{q} \times n}$ whp

$$
\frac{A^{\top} A+\lambda I}{1+\epsilon} \preccurlyeq A^{\top} \Pi^{\top} \Pi A+\lambda I \preccurlyeq \frac{A^{\top} A+\lambda I}{1-\epsilon}
$$

- Want: target dimension at most statistical dimension $\operatorname{tr}\left(A^{\top} A\left(A^{\top} A+\lambda I\right)^{-1}\right)$

Prior Work: TensorSketch

- Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]

Prior Work: TensorSketch

- Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]
- Avron, Nguyen, and Woodruff [NeurIPS 2014] proved:

1. Satisfies Approximate Matrix Product with probability $9 / 10$ if target dimension $s=\Omega\left(\frac{3{ }^{\mathrm{q}}}{\epsilon^{2}}\right)$
2. Satisfies Oblivious Subspace Embedding with probability 9/10 if target dimension $s=\Omega\left(\frac{3^{\mathrm{q}}}{\epsilon^{2}} \cdot s_{\lambda}^{2}\right)$
3. Time to sketch the tensor $x^{\otimes q}$ is $\tilde{O}(\mathrm{q} s+\mathrm{q} \cdot n n z(x))$

$$
\text { Statistical Dimension } s_{\lambda}:=\boldsymbol{\operatorname { t r }}\left(K(K+\lambda I)^{-1}\right)
$$

Prior Work: TensorSketch

- Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]
- Avron, Nguyen, and Woodruff [Neu

1. Satisfies Approximate Matrix Pr dimension $s=\Omega\left(\frac{3^{q}}{\epsilon^{2}}\right)$
2. Satisfies Oblivious Subspace Em

Main contribution: improve the exponential target
dependence on q to polynomial
target dimension $s=\Omega\left(\frac{3^{9}}{\epsilon^{2}} \cdot s_{\lambda}^{2}\right)$
3. Time to sketch the tensor $x^{\otimes q}$ is $\tilde{O}(\mathrm{q} s+\mathrm{q} \cdot n n z(x))$

$$
\text { Statistical Dimension } s_{\lambda}:=\boldsymbol{\operatorname { t r }}\left(K(K+\lambda I)^{-1}\right)
$$

Prior Work: TensorSketch

- Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]
- Avron, Nguyen, and Woodruff [Neurine ani nl manuad.

1. Satisfies Approximate Matrix Pro dimension $s=\Omega\left(\frac{3{ }^{\mathrm{q}}}{\epsilon^{2}}\right)$

Contribution 2: improve the quadratic dependence on s_{λ} to linear
2. Satisfies Oblivious Subspace Embeuums vitir provavinty JIfo if target dimension $s=\Omega\left(\frac{3^{q}}{\epsilon^{2}} \cdot s_{\lambda}^{2}\right)$
3. Time to sketch the tensor $x^{\otimes q}$ is $\tilde{O}(\mathrm{q} s+\mathrm{q} \cdot n n z(x))$

$$
\text { Statistical Dimension } s_{\lambda}:=\boldsymbol{\operatorname { t r }}\left(K(K+\lambda I)^{-1}\right)
$$

Prior Work: TensorSketch

- Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]
- Avron, Nguyen, and Woodruff [NeurIPS 2014] proved:

1. Satisf Contribution 3: improve uct with probability 9/10 if targe the success probability to
2. Satis
$1-\frac{1}{\operatorname{poly}(n)} \quad$ dding with probability $9 / 10$ if target dimension $s=\Omega\left(\overline{\epsilon^{2}} \cdot s_{\lambda}^{2}\right)$
3. Time to sketch the tensor $x^{\otimes q}$ is $\tilde{O}(\mathrm{q} s+\mathrm{q} \cdot n n z(x))$

$$
\text { Statistical Dimension } s_{\lambda}:=\boldsymbol{\operatorname { t r }}\left(K(K+\lambda I)^{-1}\right)
$$

Main Results

- Theorem 1: there exists a distribution on linear sketches $\Pi \in \mathcal{R}^{s \times d^{q}}$ such that:

1. If target dimension $s=\Omega\left(\frac{q}{\epsilon^{2}}\right)$ then Π has the Approximate Matrix Product property with probability 9/10
2. If target dimension $s=\Omega\left(\frac{q}{\epsilon^{2}} \cdot s_{\lambda}^{2}\right)$ then Π is an Oblivious Subspace Embedding with probability 9/10
3. For any $x \in \mathcal{R}^{d}, \Pi \cdot x^{\otimes q}$ is computable in time $\tilde{O}(\mathrm{q} s+\mathrm{q} \cdot n n z(x))$

Main Results

- Theorem 2: there exists a distribution on linear sketches $\Pi \in \mathcal{R}^{s \times d^{q}}$ such that:

1. If target dimension $s=\widetilde{\Omega}\left(\frac{q^{4}}{\epsilon^{2}}\right)$ then Π has the Approximate Matrix Product property with high probability
2. If target dimension $s=\widetilde{\Omega}\left(\frac{q^{4}}{\epsilon^{2}} \cdot s_{\lambda}\right)$ then Π is an Oblivious Subspace Embedding with high probability
3. For any vector $x \in \mathcal{R}^{d}$, the product $\Pi \cdot x^{\otimes q}$ is computable in time $\tilde{o}\left(q s+q^{5} \epsilon^{-2} n n z(x)\right)$

Review: TensorSketch

$$
\Pi x^{q}=\mathcal{F}^{-1}\left[\left(\mathcal{F} C_{1} x\right) \circ\left(\mathcal{F} C_{2} x\right) \circ \cdots \circ\left(\mathcal{F} C_{q} x\right)\right]
$$

- \mathcal{F} is the Fourier transform matrix and $C_{1}, C_{2}, \cdots C_{q} \in \mathcal{R}^{s \times d}$ are independent copies of CountSketch

Review: TensorSketch

$$
\Pi x^{q}=\mathcal{F}^{-1}\left[\left(\mathcal{F} C_{1} x\right) \circ\left(\mathcal{F} C_{2} x\right) \circ \cdots \circ\left(\mathcal{F} C_{q} x\right)\right]
$$

- \mathcal{F} is the Fourier transform matrix and $C_{1}, C_{2}, \cdots C_{q} \in \mathcal{R}^{s \times d}$ are independent copies of CountSketch
- The second moment of this estimator for $x=\{1\}^{d}$

$$
\mathbb{E}\left[\left\|\Pi x^{\otimes q}\right\|_{2}^{4}\right] \geq \frac{3^{q}}{2 s^{2}}\left\|x^{\otimes q}\right\|_{2}^{4}
$$

Our Sketch Construction

- Every node is an independent instance of some base sketch
- Leaves: sketch the input vector
- Internal nodes: sketch the tensor product of their children

Our Sketch Construction

- Every leaf is a sketch that runs in input sparsity time
- Internal nodes support fast application time

Our Sketch Construction

- Intermediate nodes tensor only twice

- In particular, there is no exponential dependence on q
s : target dimension of
intermediate sketches

OSE for Gaussian Kernel

- The polynomial dependence of our sketch on the degree q leads to significant improvements on sketching the Gaussian kernel in high-d

OSE for Gaussian Kernel

- The polynomial dependence of our sketch on the degree q leads to significant improvements on sketching the Gaussian kernel in high-d

Prior work

- Fast multipole method of Greengard and Rokhlin: suffers from curse of dimensionality $(\log n)^{d}$
- Fourier features method of Rahimi \& Recht: significantly suboptimal runtime of $\frac{n}{\lambda} \cdot n n z(X)$
- Modified Fourier features of Avron, Kapralov, Musco, Musco, Velingker, \mathbf{Z}^{\prime} 17: Optimal for constant dimensions d but does not apply to high dimensional data

OSE for Gaussian Kernel

- Theorem 3: for any dataset $x_{1}, x_{2}, \cdots x_{n} \in \mathbb{R}^{d}$ such that $\left\|x_{i}\right\|_{2}^{2} \leq r$ if $K \in \mathbb{R}^{n \times n}$ is the Gaussian kernel matrix defined as $K_{i, j}=e^{-\left\|x_{i}-x_{j}\right\|_{2}^{2}}$ there exists an algorithm that computes $Z \in \mathbb{R}^{n \times s}$ such that:

1. If target dimension $s=\widetilde{\Omega}\left(\frac{r^{5}}{\epsilon^{2}} \cdot s_{\lambda}\right)$ then ZZ^{\top} is an Oblivious Subspace Embedding for kernel K with high probability
2. The runtime to compute Z is $\tilde{O}\left(r^{6} \epsilon^{-2} n s_{\lambda}+r^{6} \epsilon^{-2} n n z(X)\right)$
