Oblivious Sketching of High-Degree Polynomial Kernels

IT-UNIVERSITETET I KØBENHAVN

Oblivious Sketching of High-Degree Polynomial Kernels

Thomas AhleMichael KapralovJakob KnudsenRasmus PaghITUEPFLUniv. of CopenhagenITU

Ameya VelingkerDavid WoodruffAmir ZandiehGoogle AICMUEPFL

IT-UNIVERSITETET I KØBENHAVN

Oblivious Sketching of High-Degree Polynomial Kernels

Thomas AhleMichael KapralovJakob KnudsenRasmus PaghITUEPFLUniv. of CopenhagenITU

Ameya VelingkerDavid WoodruffAmir ZandiehGoogle AICMUEPFL

Carnegie Mellon University

Kernel Methods

- Widely used in kernel-based learning, statistics, and control
- Classical machine learning tool with real-world applications

Real-World Applications of Kernel Methods

- Hyperparameter tuning of deep neural networks: e.g. Google Vizier
- Multi-Armed Bandit Optimization [Srinivas, Krause, Kakade, Seeger' 09]
- Neural Tangent Kernel: The evolution of a neural network during

training can be described by kernel methods [Jacot, Gabriel, Hongler'18]

Kernel Methods

• Learn a nonlinear function $f: \mathcal{R}^d \to \mathcal{R}$ from noisy samples

$$\gamma_i = f(x_i) + \epsilon_i$$
 for $i = 1, 2, ..., n$

• ϵ_i are iid Gaussian noise with zero mean and variance λ

• Kernel Ridge Regression is a simple and yet powerful solution

Kernel Methods

• Learn a nonlinear function $f: \mathcal{R}^d \to \mathcal{R}$ from noisy samples

$$\gamma_i = f(x_i) + \epsilon_i$$
 for $i = 1, 2, ..., n$

• ϵ_i are iid Gaussian noise with zero mean and variance λ

- Kernel Ridge Regression is a simple and yet powerful solution
 - If $f(\cdot)$ is a GP with covariance $k: \mathcal{R}^d \times \mathcal{R}^d \to \mathcal{R}$, then the optimal estimator is,

Kernel Method

- Computing all kernel entries takes $n \cdot nnz(X) + n^2$ time
- Even writing it down takes n^2 time and memory
- A single iteration of a linear system solver takes n^2 time
- For $n = 100\ 000$, K has 10 billion entries. Takes 80 GB of storage

n x n

Classical Solution: Dimensionality Reduction

- Storing Z uses O(ns) space and computing $ZZ^{\top}\alpha$ takes O(ns) time.
- Orthogonalization, eigen-decomposition, and pseudo-inversion of ZZ^{\top} all take just $O(ns^2)$ time.

Efficient Low-Rank Approximation?

• Direct eigen decomposition, or even approximation via Krylov subspace methods are out of question since they at least require fully forming *K*

Efficient Low-Rank Approximation?

- Direct eigen decomposition, or even approximation via Krylov subspace methods are out of question since they at least require fully forming *K*
- Sketching: a powerful approach to speeding up matrix problems
- Our approach: design a sketching solution for kernel low-rank approximation

Feature Space Mapping

• Any positive definite kernel $k: \mathcal{R}^d \times \mathcal{R}^d \to \mathcal{R}$ defines a lifting $\varphi: \mathcal{R}^d \to \mathcal{R}^D$ such that for all $x, y \in \mathcal{R}^d$

 $k(x,y) = \varphi(x)^{\top} \varphi(y)$

• The kernel computes the inner product between the lifted data points

Feature Space Mapping

• Any positive definite kernel $k: \mathcal{R}^d \times \mathcal{R}^d \to \mathcal{R}$ defines a lifting $\varphi: \mathcal{R}^d \to \mathcal{R}^D$ such that for all $x, y \in \mathcal{R}^d$

 $k(x,y) = \varphi(x)^{\top} \varphi(y)$

• The kernel computes the inner product between the lifted data points

 $K = \boldsymbol{\phi}^{\mathsf{T}} \boldsymbol{\phi},$

where ϕ is a $D \times n$ matrix whose i^{th} column is the projection of x_i into the feature space $\varphi(x_i)$

Sketching the Feature Space

• Sketch the feature space

$$K = \boldsymbol{\phi}^{\top} \boldsymbol{\phi} \approx \boldsymbol{\phi}^{\top} \boldsymbol{\Pi}^{\top} \boldsymbol{\Pi} \boldsymbol{\phi}$$

Sketching the Feature Space

• Sketch the feature space

 $K = \boldsymbol{\phi}^{\mathsf{T}} \boldsymbol{\phi} \approx \boldsymbol{\phi}^{\mathsf{T}} \boldsymbol{\Pi}^{\mathsf{T}} \boldsymbol{\Pi} \boldsymbol{\phi}$

• Challenge: forming the feature matrix ϕ explicitly is expensive as the feature space is typically high-dimensional (even infinite-dimensional)

Sketching the Feature Space

• Sketch the feature space

 $K = \boldsymbol{\phi}^{\mathsf{T}} \boldsymbol{\phi} \approx \boldsymbol{\phi}^{\mathsf{T}} \boldsymbol{\Pi}^{\mathsf{T}} \boldsymbol{\Pi} \boldsymbol{\phi}$

- Challenge: forming the feature matrix ϕ explicitly is expensive as the feature space is typically high-dimensional (even infinite-dimensional)
- Goal: Design a sketch matrix $\Pi \in \mathcal{R}^{s \times D}$ such that $\Pi \cdot \varphi(x)$ is computable without needing to explicitly form $\varphi(x)$

- The most popular method for kernel sketching is the Fourier Features Method of Rahimi & Recht (Test of Time Award winner at NeurIPS'17)
- Works for shift invariant kernels, such as Gaussian kernel

$$\varphi(x)_{\xi} = e^{-2\pi i \xi^{\mathsf{T}} x} \text{ for } \xi \in \mathcal{R}^d$$

• Π : Sampling matrix that samples frequencies ξ from the pdf $\hat{k}(\xi)$

- The most popular method for kernel sketching is the Fourier Features Method of Rahimi & Recht (Test of Time Award winner at NeurIPS'17)
- Works for shift invariant kernels, such as Gaussian kernel

$$\varphi(x)_{\xi} = e^{-2\pi i \xi^{\mathsf{T}} x} \text{ for } \xi \in \mathcal{R}^d$$

- Π : Sampling matrix that samples frequencies ξ from the pdf $\hat{k}(\xi)$
- Avron, Kapralov, Musco, Musco, Velingker, Z.' 17: Tight bounds to get spectral approximation guarantee + Modified Fourier Sampling with optimal number of samples for Gaussian kernel in constant dimension

- The most popular method for kernel sketching is the Fourier Features Method of Rahimi & Recht (Test of Time Award winner at NeurIPS'17)
- Works for shift invariant kernels, such as Gaussian kernel

$$\varphi(x)_{\xi} = e^{-2\pi i \xi^{\mathsf{T}} x} \text{ for } \xi \in \mathcal{R}^d$$

- Π : Sampling matrix that samples frequencies ξ from the pdf $\hat{k}(\xi)$
- Avron, Kapralov, Musco, Musco, Velingker, Z.' 17: Tight bounds to get spectral approximation guarantee + Modified Fourier Sampling with optimal number of samples for Gaussian kernel in constant dimension
- Avron, Kapralov, Musco, Musco, Velingker, Z.' 19: Optimal sampling strategy for Sinc kernel in dimension 1

- The most popular method for kernel sketching is the Fourier Features Method of Rahimi & Recht (Test of Time Award winner at NeurIPS'17)
- Works for shift invariant kernels, such as Gaussian kernel

$$\varphi(x)_{\xi} = e^{-2\pi i \xi^{\mathsf{T}} x} \text{ for } \xi \in \mathcal{R}^d$$

- Π: Samp Works only for shift invariant kernels and constant dimensional datasets spectral approximation optimal number of samples for Gaussian kernel in constant dimension
- Avron, Kapralov, Musco, Musco, Velingker, Z.' 19: Optimal sampling strategy for Sinc kernel in dimension 1

Polynomial Kernel

- In this work we focus on the important case of **Polynomial Kernel** $k(x, y) = (x^{T}y)^{q}$
- The lifting function for this kernel is $\varphi(x) = x^{\otimes q}$, where $\varphi(x) \in \mathbb{R}^{d^{q}}$ is defined as $\varphi(x)_{i_{1},i_{2},\cdots i_{q}} = x_{i_{1}}x_{i_{2}}\cdots x_{i_{q}}$ for $i_{1}, i_{2}, \cdots i_{q} \in \{1, 2, \cdots d\}$

Polynomial Kernel

- In this work we focus on the important case of **Polynomial Kernel** $k(x, y) = (x^{T}y)^{q}$
- The lifting function for this kernel is $\varphi(x) = x^{\otimes q}$, where $\varphi(x) \in \mathcal{R}^{d^{q}}$ is defined as $\varphi(x)_{i_{1},i_{2},\cdots i_{q}} = x_{i_{1}}x_{i_{2}}\cdots x_{i_{q}}$ for $i_{1}, i_{2}, \cdots i_{q} \in \{1, 2, \cdots d\}$
- Goal: design a linear sketch $\Pi \in \mathcal{R}^{s \times d^{q}}$ such that $\Pi x^{\bigotimes q}$ is efficiently computable without needing to form $x^{\bigotimes q}$ explicitly

Key Properties of Sketch

- Approximate Matrix Product: for every matrices $A, B \in \mathcal{R}^{d^q \times n}$ whp $\|A^\top \Pi^\top \Pi B - A^\top B\|_F \le \epsilon \|A\|_F \|B\|_F$
- Oblivious Subspace Embedding: for every $\lambda > 0$ and every matrix $A \in \mathcal{R}^{d^q \times n}$ whp

$$\frac{A^{\mathsf{T}}A + \lambda I}{1 + \epsilon} \leq A^{\mathsf{T}}\Pi^{\mathsf{T}}\Pi A + \lambda I \leq \frac{A^{\mathsf{T}}A + \lambda I}{1 - \epsilon}$$

• Want: target dimension at most statistical dimension $tr(A^{T}A(A^{T}A + \lambda I)^{-1})$

• Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]

- Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]
- Avron, Nguyen, and Woodruff [NeurIPS 2014] proved:
- 1. Satisfies **Approximate Matrix Product** with probability 9/10 if target dimension $s = \Omega\left(\frac{3^{q}}{\epsilon^{2}}\right)$
- 2. Satisfies **Oblivious Subspace Embedding** with probability 9/10 if target dimension $s = \Omega\left(\frac{3^{q}}{\epsilon^{2}} \cdot s_{\lambda}^{2}\right)$
- 3. Time to sketch the tensor $x^{\otimes q}$ is $\tilde{O}(qs + q \cdot nnz(x))$

Statistical Dimension $s_{\lambda} = tr(K(K + \lambda I)^{-1})$

- Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]
- Avron, Nguyen, and Woodruff [Nev
- 1. Satisfies Approximate Matrix Produces of the dimension $s = \Omega\left(\frac{3^{q}}{\epsilon^{2}}\right)$
- 2. Satisfies **Oblivious Subspace Em** target dimension $s = \Omega\left(\frac{3^{q}}{\epsilon^{2}} \cdot s_{\lambda}^{2}\right)$

Main contribution:improve the exponentialdependence on q topolynomialif

3. Time to sketch the tensor $x^{\otimes q}$ is $\tilde{O}(qs + q \cdot nnz(x))$

Statistical Dimension $s_{\lambda} = tr(K(K + \lambda I)^{-1})$

- Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]
- Avron, Nguyen, and Woodruff [NeurIPS 2014] proved
- 1. Satisfies **Approximate Matrix Pro** dimension $s = \Omega\left(\frac{3^{q}}{\epsilon^{2}}\right)$ **Contribution 2:** improve the quadratic dependence on s_{λ} to linear
- 2. Satisfies **Oblivious Subspace Embedding** with probability 5710 If target dimension $s = \Omega\left(\frac{3^{q}}{\epsilon^{2}} \cdot \boldsymbol{s}_{\lambda}^{2}\right)$
- 3. Time to sketch the tensor $x^{\otimes q}$ is $\tilde{O}(qs + q \cdot nnz(x))$

Statistical Dimension $s_{\lambda} = tr(K(K + \lambda I)^{-1})$

rget

- Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]
- Avron, Nguyen, and Woodruff [NeurIPS 2014] proved:

Satisf Contribution 3: improve targe the success probability to
Satisf 1 - 1/(poly(n)) target dimension s = Ω((ε² · sλ̃))
Time to sketch the tensor x^{⊗q} is Õ(qs + q · nnz(x))

Statistical Dimension $s_{\lambda} = tr(K(K + \lambda I)^{-1})$

Main Results

- **Theorem 1:** there exists a distribution on linear sketches $\Pi \in \mathcal{R}^{s \times d^q}$ such that:
- 1. If target dimension $s = \Omega\left(\frac{q}{\epsilon^2}\right)$ then Π has the **Approximate Matrix Product** property with probability 9/10
- 2. If target dimension $s = \Omega\left(\frac{q}{\epsilon^2} \cdot s_{\lambda}^2\right)$ then Π is an **Oblivious Subspace Embedding** with probability 9/10
- 3. For any $x \in \mathbb{R}^d$, $\Pi \cdot x^{\otimes q}$ is computable in time $\tilde{O}(qs + q \cdot nnz(x))$

Main Results

- **Theorem 2:** there exists a distribution on linear sketches $\Pi \in \mathcal{R}^{s \times d^q}$ such that:
- 1. If target dimension $s = \tilde{\Omega}\left(\frac{q^4}{\epsilon^2}\right)$ then Π has the **Approximate Matrix Product** property with **high probability**
- 2. If target dimension $s = \widetilde{\Omega}\left(\frac{q^4}{\epsilon^2} \cdot s_{\lambda}\right)$ then Π is an **Oblivious Subspace Embedding** with **high probability**
- 3. For any vector $x \in \mathbb{R}^d$, the product $\Pi \cdot x^{\otimes q}$ is computable in time $\tilde{O}\left(qs + q^5\epsilon^{-2}nnz(x)\right)$

Review: TensorSketch

$$\Pi x^{q} = \mathcal{F}^{-1} \Big[(\mathcal{F}C_{1}x) \circ (\mathcal{F}C_{2}x) \circ \cdots \circ (\mathcal{F}C_{q}x) \Big]$$

• \mathcal{F} is the Fourier transform matrix and $C_1, C_2, \cdots C_q \in \mathcal{R}^{s \times d}$ are independent copies of CountSketch

Review: TensorSketch

$$\Pi x^{q} = \mathcal{F}^{-1} \Big[(\mathcal{F} \mathcal{C}_{1} x) \circ (\mathcal{F} \mathcal{C}_{2} x) \circ \cdots \circ (\mathcal{F} \mathcal{C}_{q} x) \Big]$$

- \mathcal{F} is the Fourier transform matrix and $C_1, C_2, \cdots C_q \in \mathcal{R}^{s \times d}$ are independent copies of CountSketch
- The second moment of this estimator for $x = \{1\}^d$ $\mathbb{E}\left[\left\|\Pi x^{\otimes q}\right\|_2^4\right] \ge \frac{3^q}{2s^2} \left\|x^{\otimes q}\right\|_2^4$

Our Sketch Construction

- Every node is an independent instance of some base sketch
- Leaves: sketch the input vector
- Internal nodes: sketch the tensor product of their children

Our Sketch Construction

- Every leaf is a sketch that runs in input sparsity time
- Internal nodes support fast application time

Our Sketch Construction

- Intermediate nodes tensor only twice
- Loss in internal nodes is only $\frac{3^2}{s}$
- Number of such nodes is O(q)

• Hence
$$\frac{Var(\|\Pi x\|_2^2)}{\|x\|_2^4} \approx \left(1 + \frac{1}{s}\right)^q - 1 \approx \frac{q}{s}$$

s: target dimension of intermediate sketches

OSE for Gaussian Kernel

• The polynomial dependence of our sketch on the degree q leads to significant improvements on sketching the **Gaussian kernel** in high-d

OSE for Gaussian Kernel

- The polynomial dependence of our sketch on the degree q leads to significant improvements on sketching the Gaussian kernel in high-d
 Prior work
- Fast multipole method of Greengard and Rokhlin: suffers from curse of dimensionality $(\log n)^d$
- Fourier features method of Rahimi & Recht: significantly suboptimal runtime of $\frac{n}{\lambda} \cdot nnz(X)$
- Modified Fourier features of Avron, Kapralov, Musco, Musco, Velingker, Z' 17: Optimal for constant dimensions d but does not apply to high dimensional data

OSE for Gaussian Kernel

- Theorem 3: for any dataset $x_1, x_2, \dots x_n \in \mathbb{R}^d$ such that $||x_i||_2^2 \leq r$ if $K \in \mathbb{R}^{n \times n}$ is the Gaussian kernel matrix defined as $K_{i,j} = e^{-||x_i x_j||_2^2}$ there exists an algorithm that computes $Z \in \mathbb{R}^{n \times s}$ such that:
- 1. If target dimension $s = \widetilde{\Omega}\left(\frac{r^5}{\epsilon^2} \cdot s_{\lambda}\right)$ then ZZ^{\top} is an **Oblivious Subspace Embedding** for kernel *K* with **high probability**
- 2. The runtime to compute Z is $\tilde{O}(r^6 \epsilon^{-2} n s_{\lambda} + r^6 \epsilon^{-2} n n z(X))$