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Kernel Methods

* Widely used in kernel-based learning, statistics, and control

* Classical machine learning tool with real-world applications




Real-World Applications of Kernel Methods

* Hyperparameter tuning of deep neural networks: e.g. Google Vizier
* Multi-Armed Bandit Optimization [Srinivas, Krause, Kakade, Seeger’ 09]

* Neural Tangent Kernel: The evolution of a neural network during

training can be described by kernel methods [Jacot, Gabriel, Hongler’18]



Kernel Methods

* Learn a nonlinear function f: R% — R from noisy samples
i = f(x;) +€fori=12,..n
* ¢; are iid Gaussian noise with zero mean and variance 1

* Kernel Ridge Regression is a simple and yet powerful solution



Kernel Methods

* Learn a nonlinear function f: R% — R from noisy samples
i = f(x;) +€fori=12,..n
* ¢; are iid Gaussian noise with zero mean and variance 1

* Kernel Ridge Regression is a simple and yet powerful solution

* If £(-) is a GP with covariance k: RxR% — R, then the optimal estimator is,

fx) =Xy aik(x, x;)

o = argmingegn||KB — vl + ABTKB | ¥

< —— True Function
——KRR Estimator| « &
- Data




Kernel Method

* Kernel methods are expensive non-linear kernel

n training points

nXn

inner product

I K

Kij = k(x;, x;)

d features

* Computing all kernel entries takes n - nnz(X) + n® time
e Even writing it down takes n? time and memory

* A single iteration of a linear system solver takes n? time
* Forn =100 000, K has 10 billion entries. Takes 80 GB of storage



Classical Solution: Dimensionality Reduction
| " NXS
OW-ran
apprOX|mat|on Z

e Storing Z uses 0(ns) space and computing ZZ " a takes O (ns) time.

* Orthogonalization, eigen-decomposition, and pseudo-inversion of
ZZ " all take just O(ns?) time.



Efficient Low-Rank Approximation?

* Direct eigen decomposition, or even approximation via Krylov
subspace methods are out of question since they at least require fully
forming K



Efficient Low-Rank Approximation?

* Direct eigen decomposition, or even approximation via Krylov
subspace methods are out of question since they at least require fully
forming K

 Sketching: a powerful approach to speeding up matrix problems

* Our approach: design a sketching solution for kernel low-rank
approximation



Feature Space Mapping

* Any positive definite kernel k: RExR? — R defines a lifting
@: R% - RP such that for all x,y € R?

k(x,y) = p(x) o (y)
* The kernel computes the inner product between the lifted data points

12



Feature Space Mapping

* Any positive definite kernel k: RExR? — R defines a lifting
@: R% - RP such that for all x,y € R?

k(x,y) = ox) ()
* The kernel computes the inner product between the lifted data points
K=¢'e,
where ¢ is a Dxn matrix whose it" column is the projection of x; into
the feature space @ (x;)
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Sketching the Feature Space

* Sketch the feature space

K=¢T¢~¢T g
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* Sketch the feature space
K=¢'¢p~¢'ll'lp
* Challenge: forming the feature matrix ¢ explicitly is expensive as the
feature space is typically high-dimensional (even infinite-dimensional)



Sketching the Feature Space

* Sketch the feature space
K=¢'¢p~¢'ll'lp
* Challenge: forming the feature matrix ¢ explicitly is expensive as the
feature space is typically high-dimensional (even infinite-dimensional)

* Goal: Design a sketch matrix I1 € R5*P such that IT - @(x) is
computable without needing to explicitly form ¢ (x)



Kernel Sketching technic

ues

* The most popular method for kernel sketching is t
Method of Rahimi & Recht (Test of Time Award wi

* Works for shift invariant kernels, such as Gaussian

he Fourier Features
nner at NeurlPS’17)

kernel

px)s = e=2miE X for £ e R

* [I: Sampling matrix that samples frequencies ¢ fro

m the pdf k(¢)
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Kernel Sketching techniques

* The most popular method for kernel sketching is the Fourier Features
Method of Rahimi & Recht (Test of Time Award winner at NeurlPS’17)

* Works for shift invariant kernels, such as Gaussian kernel
px)s = e=2miE X for £ e R
e IT: Sampling matrix that samples frequencies & from the pdf k(¢)

* Avron, Kapralov, Musco, Musco, Velingker, Z.” 17: Tight bounds to get
spectral approximation guarantee + Modified Fourier Sampling with
optimal number of samples for Gaussian kernel in constant dimension
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Kernel Sketching techniques

* The most popular method for kernel sketching is the Fourier Features
Method of Rahimi & Recht (Test of Time Award winner at NeurlPS’17)

* Works for shift invariant kernels, such as Gaussian kernel
px)s = e=2miE X for £ e R
e IT: Sampling matrix that samples frequencies & from the pdf k(¢)

* Avron, Kapralov, Musco, Musco, Velingker, Z.” 17: Tight bounds to get
spectral approximation guarantee + Modified Fourier Sampling with
optimal number of samples for Gaussian kernel in constant dimension

* Avron, Kapralov, Musco, Musco, Velingker, Z.” 19: Optimal sampling strategy
for Sinc kernel in dimension 1
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Kernel Sketching techniques

* The most popular method for kernel sketching is the Fourier Features
Method of Rahimi & Recht (Test of Time Award winner at NeurlPS’17)

* Works for shift invariant kernels, such as Gaussian kernel
o(x)r = e~ 2mi¢ X for &£ € R®

* I1: Samg Works only for shift invariant kernels and * Pdf k(&)

* Avron, Ka constant dimensional datasets s to get
Y =T o1 > ———— " ] o oo | [T o V=RV V]} d o
optimal number of samples for Gaussmn kernel in constant dimension

* Avron, Kapralov, Musco, Musco, Velingker, Z.” 19: Optimal sampling strategy
for Sinc kernel in dimension 1



Polynomial Kernel

* In this work we focus on the important case of Polynomial Kernel
k(x,y) = (xTy)A
* The lifting function for this kernel is @ (x) = x®4,

where @ (x) € R4 is defined as QX)) i,
iy, iz, i € (1,2, d}

q — xilxiz "’Xl'q for



Polynomial Kernel

* In this work we focus on the important case of Polynomial Kernel
k(x,y) = (xTy)A
* The lifting function for this kernel is @ (x) = x®4,

where @ (x) € R4 is defined as QX)) i,
iy, iz, i € (1,2, d}

* Goal: design a linear sketch I1 € R5*4% sych that [1x®1 is efficiently
computable without needing to form x®4 explicitly

q — xilxiz "’Xl'q for



Key Properties of Sketch

d9xn

* Approximate Matrix Product: for every matrices A,B € R whp

|IA'TI'IB — A" Bl|r < €llAllr |IBll

* Oblivious Subspace Embedding: for every A > 0 and every matrix
A € RAM whp

ATA + Al - ATA + Al
<SA'IlI'TIA + Al <
1+ € 1—¢€

 Want: target dimension at most statistical dimension tr(ATA(ATA + A1)™1)




Prior Work: TensorSketch

* Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]



Prior Work: TensorSketch

* Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]

* Avron, Nguyen, and Woodruff [NeurlPS 2014] proved:

1.

Satisfies Approximate Matrix Product with probability 9/10 if target
q
dimension s = () (3 )

€2

Satisfies Oblivious Subspace Embedding with probability 9/10 if
34

target dimension s = () (Z : Sf)

Time to sketch the tensor x®9 is 5(qs +q- nnz(x))
[ Statistical Dimension s,: = tr(K(K + AI)~1) }
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Prior Work: TensorSketch

* Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]

* Avron, Nguyen, and Woodruff [Ney~

o _ , Main contribution:
1. Satisfies Approximate Matrix Pr¢ . : target
| | 34 improve the exponential
dimension s = {) (E_z) dependence on q to
2. Satisfies Oblivious Subspace Emi polynomial if
q
target dimension s = () (% - S/%)

3. Time to sketch the tensor x®4 is 5(qs +q- nnz(x))
[ Statistical Dimension s,: = tr(K(K + AI)~1) }
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Prior Work: TensorSketch

* Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]

* Avron, Nguyen, and Woodruff [Neurjpmwﬁ

1. Satisfies Approximate Matrix Pro Cont”b”t"_’“ 2: improve
349 the quadratic dependence
dimension s = Q( )

on s; to linear

2. Satisfies Oblivious Subspace EmbéhUWB_VW—WUUﬁUW

target dimension s = () (62 SA)

irget

3. Time to sketch the tensor x®4 is 5(qs +q- nnz(x))
[ Statistical Dimension s,: = tr(K(K + AI)~1) }
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Prior Work: TensorSketch

* Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]

* Avron, Nguyen, and Woodruff [NeurlPS 2014] proved:

1.

Satis uct with probability 9/10 if

Contribution 3: improve

targe the success probability to

. 1 : . . .
Satis 1 — s dding with probability 9/10 if
target dimension s = {1 \; : S/{)

Time to sketch the tensor x®9 is 5(qs +q- nnz(x))
[ Statistical Dimension s,: = tr(K(K + AI)~1) }
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Main Results

» Theorem 1: there exists a distribution on linear sketches [T € RSX4*
such that:

1. If target dimension s = () ( ) then Il has the Approximate Matrix
Product property with probability 9/10

2. If target dimension s = () (i ) then II is an Oblivious Subspace

Embedding with probability 9/10
3. Foranyx € R%, 11 x®9 is computable in time é(qs +q- nnz(x))



Main Results

» Theorem 2: there exists a distribution on linear sketches [T € RS*4?
such that:

~

4
1. If target dimension s = () ( ) then Il has the Approximate Matrix
Product property with high probability

~

4
2. If target dimension s = () (q 5,1) then Il is an Oblivious Subspace
Embedding with high probability

3. For any vector x € R?, the product IT - x®9 is computable in time
0 (qs -+ QSE_ZTLTLZ(X))

30



Review: TensorSketch

Mx? = F(FCyx) o (FCyx) 0 -0 (FCyx)]

* F is the Fourier transform matrix and (4, C3, - C; € R5*4 are
independent copies of CountSketch



Review: TensorSketch

Mx? = F(FCyx) o (FCyx) 0 -0 (FCyx)]

* F is the Fourier transform matrix and (4, C3, - C; € R5*4 are

independent copies of CountSketch

* The second moment of this estlmator for x = {1}4
B [Inxe!] > = o]



Our Sketch Construction

internal nodes:
@ “~ TensorSketch or TensorSRHT

/
®

* Every node is an
independent instance of
some base sketch

* Leaves: sketch the input
vector

* Internal nodes: sketch the
tensor product of their \\\ /

. leaves: CountSketch or OSNAP
children

33



Our Sketch Construction

internal nodes:

@ “~ TensorSketch or TensorSRHT

\/ leaves: CountSketch or OSNAP

* Every leaf is a sketch that
runs in input sparsity time

* Internal nodes support fast
application time

34



Our Sketch Construction

* Intermediate nodes tensor only twice

. ° ° 32
e Loss in internal nodes is onIy?

* Number of such nodes is 0(q)

2 q
e Hence var(lIlx|lz) ~ (1 + %) —1

4
1113

2

4
S

* In particular, there is no exponential

Tensor only twice

Vi

w1 =51 (1)1 &® ’UQ)

Va

z = Q(wy ® wsy)

w1 @ woy

dependence on g L

s: target dimension of
intermediate sketches

V3

w2 = So(v1 ® v2)

35
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OSE for Gaussian Kernel

* The polynomial dependence of our sketch on the degree q leads to
significant improvements on sketching the Gaussian kernel in high-d



OSE for Gaussian Kernel

* The polynomial dependence of our sketch on the degree q leads to
significant improvements on sketching the Gaussian kernel in high-d

Prior work

* Fast multipole method of Greengard and Rokhlin: suffers from curse
of dimensionality (logn)¢

* Fourier features method of Rahimi & Recht: significantly suboptimal
runtime of % nnz(X)

* Modified Fourier features of Avron, Kapralov, Musco, Musco,
Velingker, Z’ 17: Optimal for constant dimensions d but does not
apply to high dimensional data



OSE for Gaussian Kernel

* Theorem 3: for any dataset xy, x5, - x,, € R% such that ||x;||5 < r if

2
K € R™ " js the Gaussian kernel matrix defined as K;; = e_”xi_xf”z

there exists an algorithm that computes Z € R™*S such that:

/.5
1. If target dimension s = () (r— . 5,1) then ZZ" is an Oblivious

€2

Subspace Embedding for kernel K with high probability

2. The runtime to compute Z is O(r%¢~?ns; + ¢ 2nnz(X))



