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Kernel Methods

• Widely used in kernel-based learning, statistics, and control
• Classical machine learning tool with real-world applications
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Real-World Applications of Kernel Methods

• Hyperparameter tuning of deep neural networks: e.g. Google Vizier

• Multi-Armed Bandit Optimization [Srinivas, Krause, Kakade, Seeger’ 09]

• Neural Tangent Kernel: The evolution of a neural network during 

training can be described by kernel methods [Jacot, Gabriel, Hongler’18]
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Kernel Methods
• Learn a nonlinear function !:ℛ$ → ℛ from noisy samples 

&' = ! )' + +' for , = 1,2, …1
• +' are iid Gaussian noise with zero mean and variance 2

• Kernel Ridge Regression is a simple and yet powerful solution
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Kernel Methods
• Learn a nonlinear function !:ℛ$ → ℛ from noisy samples 

&' = ! )' + +' for , = 1,2, …1
• +' are iid Gaussian noise with zero mean and variance 2

• Kernel Ridge Regression is a simple and yet powerful solution
• If ! ⋅ is	a	GP	with	covariance	C: ℛ$×ℛ$ → ℛ, then the optimal estimator is,

E! ) = ∑'GHI J'C(), )')

J = argminO∈ℝR ST − & V
V + 2TWST
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Kernel Method
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• Computing all kernel entries takes ! ⋅ !!# $ + !& time
• Even writing it down takes !& time and memory
• A single iteration of a linear system solver takes !& time
• For ! = 100 000, * has 10 billion entries. Takes 80 GB of storage

• Kernel methods are expensive
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Classical Solution: Dimensionality Reduction

• Storing ! uses " #$ space and computing !!%& takes " #$ time. 
• Orthogonalization, eigen-decomposition, and pseudo-inversion of 
!!% all take just " #$' time.
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Efficient Low-Rank Approximation?

• Direct eigen decomposition, or even approximation via Krylov 
subspace methods are out of question since they at least require fully 
forming !
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Efficient Low-Rank Approximation?

• Direct eigen decomposition, or even approximation via Krylov 
subspace methods are out of question since they at least require fully 
forming !

• Sketching: a powerful approach to speeding up matrix problems
• Our approach: design a sketching solution for kernel low-rank 

approximation

11



Feature Space Mapping

• Any positive definite kernel !:ℛ$×ℛ$ → ℛ defines a lifting
':ℛ$ → ℛ( such that for all ), + ∈ ℛ$

! ), + = ' ) .' +
• The kernel computes the inner product between the lifted data points
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Feature Space Mapping

• Any positive definite kernel !:ℛ$×ℛ$ → ℛ defines a lifting
':ℛ$ → ℛ( such that for all ), + ∈ ℛ$

! ), + = ' ) .' +
• The kernel computes the inner product between the lifted data points

/ = 0.0, 
where 0 is a 1×2 matrix whose 345 column is the projection of )6 into 
the feature space ' )6
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Sketching the Feature Space

• Sketch the feature space 
! = #$# ≈ #$Π$Π#
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Sketching the Feature Space

• Sketch the feature space 
! = #$# ≈ #$Π$Π#

• Challenge: forming the feature matrix # explicitly is expensive as the 
feature space is typically high-dimensional (even infinite-dimensional)
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Sketching the Feature Space

• Sketch the feature space 
! = #$# ≈ #$Π$Π#

• Challenge: forming the feature matrix # explicitly is expensive as the 
feature space is typically high-dimensional (even infinite-dimensional)
• Goal: Design a sketch matrix Π ∈ ℛ)×+ such that Π ⋅ - . is 

computable without needing to explicitly form - .
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Kernel Sketching techniques
• The most popular method for kernel sketching is the Fourier Features 

Method of Rahimi & Recht (Test of Time Award winner at NeurIPS’17)

• Works for shift invariant kernels, such as Gaussian kernel

! " # = %&'()#*+ for , ∈ ℛ/

• Π: Sampling matrix that samples frequencies , from the pdf 12 ,
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• Works for shift invariant kernels, such as Gaussian kernel

! " # = %&'()#*+ for , ∈ ℛ/

• Π: Sampling matrix that samples frequencies , from the pdf 12 ,
• Avron, Kapralov, Musco, Musco, Velingker, Z.’ 17: Tight bounds to get 

spectral approximation guarantee + Modified Fourier Sampling with 
optimal number of samples for Gaussian kernel in constant dimension
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Kernel Sketching techniques
• The most popular method for kernel sketching is the Fourier Features 

Method of Rahimi & Recht (Test of Time Award winner at NeurIPS’17)

• Works for shift invariant kernels, such as Gaussian kernel

! " # = %&'()#*+ for , ∈ ℛ/

• Π: Sampling matrix that samples frequencies , from the pdf 12 ,
• Avron, Kapralov, Musco, Musco, Velingker, Z.’ 17: Tight bounds to get 

spectral approximation guarantee + Modified Fourier Sampling with 
optimal number of samples for Gaussian kernel in constant dimension

• Avron, Kapralov, Musco, Musco, Velingker, Z.’ 19: Optimal sampling strategy 
for Sinc kernel in dimension 1

20

Works only for shift invariant kernels and 
constant dimensional datasets



Polynomial Kernel

• In this work we focus on the important case of Polynomial Kernel
! ", $ = "&$ '

• The lifting function for this kernel is ( " = "⊗',
where ( " ∈ ℛ,- is defined as ( " ./,.0,⋯.- = "./".0 ⋯".- for 
23, 24,⋯ 2' ∈ 1,2,⋯7
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Polynomial Kernel

• In this work we focus on the important case of Polynomial Kernel
! ", $ = "&$ '

• The lifting function for this kernel is ( " = "⊗',
where ( " ∈ ℛ,- is defined as ( " ./,.0,⋯.- = "./".0 ⋯".- for 
23, 24,⋯ 2' ∈ 1,2,⋯7
• Goal: design a linear sketch Π ∈ ℛ9×,- such that Π"⊗' is efficiently 

computable without needing to form "⊗' explicitly
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Key Properties of Sketch

• Approximate Matrix Product: for every matrices !, # ∈ ℛ&'×) whp
!*Π*Π# − !*# - ≤ / ! - # -

• Oblivious Subspace Embedding: for every λ > 0 and every matrix 
! ∈ ℛ&'×) whp

!*! + 45
1 + / ≼ !*Π*Π! + 45 ≼ !*! + 45

1 − /
• Want: target dimension at most statistical dimension 89 !*! !*! + 45 :;
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Prior Work: TensorSketch

• Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]
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Prior Work: TensorSketch

• Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]

• Avron, Nguyen, and Woodruff [NeurIPS 2014] proved:

1. Satisfies Approximate Matrix Product with probability 9/10 if target 

dimension ! = Ω $%
&'

2. Satisfies Oblivious Subspace Embedding with probability 9/10 if 

target dimension ! = Ω $%
&' ⋅ !)

*

3. Time to sketch the tensor +⊗- is ./ q! + q ⋅ 223 +

25

Statistical Dimension !): = 56 7 7 + 89 :;



Prior Work: TensorSketch

• Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]

• Avron, Nguyen, and Woodruff [NeurIPS 2014] proved:

1. Satisfies Approximate Matrix Product with probability 9/10 if target 

dimension ! = Ω $%
&'

2. Satisfies Oblivious Subspace Embedding with probability 9/10 if 

target dimension ! = Ω $%
&' ⋅ !)

*

3. Time to sketch the tensor +⊗- is ./ q! + q ⋅ 223 +
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Main contribution: 
improve the exponential

dependence on q to 
polynomial

Statistical Dimension !): = 56 7 7 + 89 :;



Prior Work: TensorSketch

• Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]

• Avron, Nguyen, and Woodruff [NeurIPS 2014] proved:

1. Satisfies Approximate Matrix Product with probability 9/10 if target 

dimension ! = Ω $%
&'

2. Satisfies Oblivious Subspace Embedding with probability 9/10 if 

target dimension ! = Ω $(
&' ⋅ *+

,

3. Time to sketch the tensor -⊗/ is 01 q! + q ⋅ 445 -

27

Contribution 2: improve 
the quadratic dependence 

on !6 to linear

Statistical Dimension !6: = 89 : : + ;< =>



Prior Work: TensorSketch

• Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]

• Avron, Nguyen, and Woodruff [NeurIPS 2014] proved:

1. Satisfies Approximate Matrix Product with probability 9/10 if 

target dimension ! = Ω $%
&'

2. Satisfies Oblivious Subspace Embedding with probability 9/10 if 

target dimension ! = Ω $(
&' ⋅ !*

+

3. Time to sketch the tensor ,⊗. is /0 q! + q ⋅ 334 ,
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Contribution 3: improve 
the success probability to 

1 − 7
89:;(=)

Statistical Dimension !*: = @A B B + CD E7



Main Results

• Theorem 1: there exists a distribution on linear sketches Π ∈ ℛ$×&'

such that:

1. If target dimension ( = Ω +
,- then Π has the Approximate Matrix 

Product property with probability 9/10

2. If target dimension ( = Ω +
,- ⋅ (/

0 then Π is an Oblivious Subspace 
Embedding with probability 9/10

3. For any 1 ∈ ℛ&, Π ⋅ 1⊗+ is computable in time 34 q( + q ⋅ 778 1
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Main Results

• Theorem 2: there exists a distribution on linear sketches Π ∈ ℛ$×&'

such that:

1. If target dimension ( = *Ω ,-
./ then Π has the Approximate Matrix 

Product property with high probability

2. If target dimension ( = *Ω ,-
./ ⋅ (1 then Π is an Oblivious Subspace 

Embedding with high probability
3. For any vector 2 ∈ ℛ&, the product Π ⋅ 2⊗, is computable in time 

45 6( + 689:;<<= 2
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Review: TensorSketch

Π"# = ℱ&' ℱ('" ∘ ℱ(*" ∘ ⋯ ∘ ℱ(#"
• ℱ is the Fourier transform matrix and (', (*,⋯(# ∈ ℛ/×1 are 

independent copies of CountSketch
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Review: TensorSketch

Π"# = ℱ&' ℱ('" ∘ ℱ(*" ∘ ⋯ ∘ ℱ(#"
• ℱ is the Fourier transform matrix and (', (*,⋯(# ∈ ℛ/×1 are 

independent copies of CountSketch
• The second moment of this estimator for " = 1 1

3 Π"⊗#
*
5 ≥ 78

2:* "⊗#
*
5
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Our Sketch Construction

33

• Every node is an 
independent instance of 
some base sketch
• Leaves: sketch the input 

vector
• Internal nodes: sketch the 

tensor product of their 
children



Our Sketch Construction
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• Every leaf is a sketch that 
runs in input sparsity time 
• Internal nodes support fast 

application time



Our Sketch Construction
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• Intermediate nodes tensor only twice

• Loss in internal nodes is only !
"

#
• Number of such nodes is $(&)
• Hence ()* +, ""

, "-
≈ 1 + 1

#
2
− 1 ≈ 2

#
• In particular, there is no exponential 

dependence on q 5: target dimension of 
intermediate sketches



OSE for Gaussian Kernel

• The polynomial dependence of our sketch on the degree q leads to 
significant improvements on sketching the Gaussian kernel in high-d
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OSE for Gaussian Kernel

• The polynomial dependence of our sketch on the degree q leads to 
significant improvements on sketching the Gaussian kernel in high-d

• Fast multipole method of Greengard and Rokhlin: suffers from curse 
of dimensionality log % &

• Fourier features method of Rahimi & Recht: significantly suboptimal 
runtime of  '( ⋅ %%* +
• Modified Fourier features of Avron, Kapralov, Musco, Musco, 

Velingker, Z’ 17: Optimal for constant dimensions d but does not 
apply to high dimensional data 
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OSE for Gaussian Kernel

• Theorem 3: for any dataset !", !$,⋯ !& ∈ ℝ) such that !* $
$ ≤ , if 

- ∈ ℝ&×& is the Gaussian kernel matrix defined as -*,/ = 12 34235 6
6

there exists an algorithm that computes 7 ∈ ℝ&×8 such that:

1. If target dimension 9 = :Ω <=

>6
⋅ 9@ then ZZB is an Oblivious 

Subspace Embedding for kernel - with high probability
2. The runtime to compute 7 is CD ,EF2$G9@ + ,EF2$GGI J
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