
Oblivious Sketching of High-Degree
Polynomial Kernels

Amir Zandieh
EPFL

Thomas Ahle
ITU

Ameya Velingker
Google AI

Michael Kapralov
EPFL

Jakob Knudsen
Univ. of Copenhagen

Rasmus Pagh
ITU

David Woodruff
CMU

1

Oblivious Sketching of High-Degree
Polynomial Kernels

Amir Zandieh
EPFL

Thomas Ahle
ITU

Ameya Velingker
Google AI

Michael Kapralov
EPFL

Jakob Knudsen
Univ. of Copenhagen

Rasmus Pagh
ITU

David Woodruff
CMU

2

Oblivious Sketching of High-Degree
Polynomial Kernels

Amir Zandieh
EPFL

Thomas Ahle
ITU

Ameya Velingker
Google AI

Michael Kapralov
EPFL

Jakob Knudsen
Univ. of Copenhagen

Rasmus Pagh
ITU

David Woodruff
CMU

3

Kernel Methods

• Widely used in kernel-based learning, statistics, and control
• Classical machine learning tool with real-world applications

4

Real-World Applications of Kernel Methods

• Hyperparameter tuning of deep neural networks: e.g. Google Vizier

• Multi-Armed Bandit Optimization [Srinivas, Krause, Kakade, Seeger’ 09]

• Neural Tangent Kernel: The evolution of a neural network during

training can be described by kernel methods [Jacot, Gabriel, Hongler’18]

5

Kernel Methods
• Learn a nonlinear function !:ℛ$ → ℛ from noisy samples

&' = !)' + +' for , = 1,2, …1
• +' are iid Gaussian noise with zero mean and variance 2

• Kernel Ridge Regression is a simple and yet powerful solution

6

Kernel Methods
• Learn a nonlinear function !:ℛ$ → ℛ from noisy samples

&' = !)' + +' for , = 1,2, …1
• +' are iid Gaussian noise with zero mean and variance 2

• Kernel Ridge Regression is a simple and yet powerful solution
• If ! ⋅ is	a	GP	with	covariance	C: ℛ$×ℛ$ → ℛ, then the optimal estimator is,

E!) = ∑'GHI J'C(),)')

J = argminO∈ℝR ST − & V
V + 2TWST

7

Kernel Method

8

• Computing all kernel entries takes ! ⋅ !!# $ + !& time
• Even writing it down takes !& time and memory
• A single iteration of a linear system solver takes !& time
• For ! = 100 000, * has 10 billion entries. Takes 80 GB of storage

• Kernel methods are expensive

*
n x n

*,- = .(0,, 0-)

non-linear kernel
inner product

03 0& ⋯ 05

n training points

d
fe

at
ur

es

Classical Solution: Dimensionality Reduction

• Storing ! uses " #$ space and computing !!%& takes " #$ time.
• Orthogonalization, eigen-decomposition, and pseudo-inversion of
!!% all take just " #$' time.

9

low-rank
approximation

n x s

! !%(
n x n

Efficient Low-Rank Approximation?

• Direct eigen decomposition, or even approximation via Krylov
subspace methods are out of question since they at least require fully
forming !

10

Efficient Low-Rank Approximation?

• Direct eigen decomposition, or even approximation via Krylov
subspace methods are out of question since they at least require fully
forming !

• Sketching: a powerful approach to speeding up matrix problems
• Our approach: design a sketching solution for kernel low-rank

approximation

11

Feature Space Mapping

• Any positive definite kernel !:ℛ$×ℛ$ → ℛ defines a lifting
':ℛ$ → ℛ(such that for all), + ∈ ℛ$

!), + = ') .' +
• The kernel computes the inner product between the lifted data points

12

Feature Space Mapping

• Any positive definite kernel !:ℛ$×ℛ$ → ℛ defines a lifting
':ℛ$ → ℛ(such that for all), + ∈ ℛ$

!), + = ') .' +
• The kernel computes the inner product between the lifted data points

/ = 0.0,
where 0 is a 1×2 matrix whose 345 column is the projection of)6 into
the feature space ')6

13

Sketching the Feature Space

• Sketch the feature space
! = #$# ≈ #$Π$Π#

14

Sketching the Feature Space

• Sketch the feature space
! = #$# ≈ #$Π$Π#

• Challenge: forming the feature matrix # explicitly is expensive as the
feature space is typically high-dimensional (even infinite-dimensional)

15

Sketching the Feature Space

• Sketch the feature space
! = #$# ≈ #$Π$Π#

• Challenge: forming the feature matrix # explicitly is expensive as the
feature space is typically high-dimensional (even infinite-dimensional)
• Goal: Design a sketch matrix Π ∈ ℛ)×+ such that Π ⋅ - . is

computable without needing to explicitly form - .

16

Kernel Sketching techniques
• The most popular method for kernel sketching is the Fourier Features

Method of Rahimi & Recht (Test of Time Award winner at NeurIPS’17)

• Works for shift invariant kernels, such as Gaussian kernel

! " # = %&'()#*+ for , ∈ ℛ/

• Π: Sampling matrix that samples frequencies , from the pdf 12 ,

17

Kernel Sketching techniques
• The most popular method for kernel sketching is the Fourier Features

Method of Rahimi & Recht (Test of Time Award winner at NeurIPS’17)

• Works for shift invariant kernels, such as Gaussian kernel

! " # = %&'()#*+ for , ∈ ℛ/

• Π: Sampling matrix that samples frequencies , from the pdf 12 ,
• Avron, Kapralov, Musco, Musco, Velingker, Z.’ 17: Tight bounds to get

spectral approximation guarantee + Modified Fourier Sampling with
optimal number of samples for Gaussian kernel in constant dimension

18

Kernel Sketching techniques
• The most popular method for kernel sketching is the Fourier Features

Method of Rahimi & Recht (Test of Time Award winner at NeurIPS’17)

• Works for shift invariant kernels, such as Gaussian kernel

! " # = %&'()#*+ for , ∈ ℛ/

• Π: Sampling matrix that samples frequencies , from the pdf 12 ,
• Avron, Kapralov, Musco, Musco, Velingker, Z.’ 17: Tight bounds to get

spectral approximation guarantee + Modified Fourier Sampling with
optimal number of samples for Gaussian kernel in constant dimension

• Avron, Kapralov, Musco, Musco, Velingker, Z.’ 19: Optimal sampling strategy
for Sinc kernel in dimension 1

19

Kernel Sketching techniques
• The most popular method for kernel sketching is the Fourier Features

Method of Rahimi & Recht (Test of Time Award winner at NeurIPS’17)

• Works for shift invariant kernels, such as Gaussian kernel

! " # = %&'()#*+ for , ∈ ℛ/

• Π: Sampling matrix that samples frequencies , from the pdf 12 ,
• Avron, Kapralov, Musco, Musco, Velingker, Z.’ 17: Tight bounds to get

spectral approximation guarantee + Modified Fourier Sampling with
optimal number of samples for Gaussian kernel in constant dimension

• Avron, Kapralov, Musco, Musco, Velingker, Z.’ 19: Optimal sampling strategy
for Sinc kernel in dimension 1

20

Works only for shift invariant kernels and
constant dimensional datasets

Polynomial Kernel

• In this work we focus on the important case of Polynomial Kernel
! ", $ = "&$ '

• The lifting function for this kernel is (" = "⊗',
where (" ∈ ℛ,- is defined as (" ./,.0,⋯.- = "./".0 ⋯".- for
23, 24,⋯ 2' ∈ 1,2,⋯7

21

Polynomial Kernel

• In this work we focus on the important case of Polynomial Kernel
! ", $ = "&$ '

• The lifting function for this kernel is (" = "⊗',
where (" ∈ ℛ,- is defined as (" ./,.0,⋯.- = "./".0 ⋯".- for
23, 24,⋯ 2' ∈ 1,2,⋯7
• Goal: design a linear sketch Π ∈ ℛ9×,- such that Π"⊗' is efficiently

computable without needing to form "⊗' explicitly

22

Key Properties of Sketch

• Approximate Matrix Product: for every matrices !, # ∈ ℛ&'×) whp
!*Π*Π# − !*# - ≤ / ! - # -

• Oblivious Subspace Embedding: for every λ > 0 and every matrix
! ∈ ℛ&'×) whp

!*! + 45
1 + / ≼ !*Π*Π! + 45 ≼ !*! + 45

1 − /
• Want: target dimension at most statistical dimension 89 !*! !*! + 45 :;

23

Prior Work: TensorSketch

• Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]

24

Prior Work: TensorSketch

• Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]

• Avron, Nguyen, and Woodruff [NeurIPS 2014] proved:

1. Satisfies Approximate Matrix Product with probability 9/10 if target

dimension ! = Ω $%
&'

2. Satisfies Oblivious Subspace Embedding with probability 9/10 if

target dimension ! = Ω $%
&' ⋅ !)

*

3. Time to sketch the tensor +⊗- is ./ q! + q ⋅ 223 +

25

Statistical Dimension !): = 56 7 7 + 89 :;

Prior Work: TensorSketch

• Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]

• Avron, Nguyen, and Woodruff [NeurIPS 2014] proved:

1. Satisfies Approximate Matrix Product with probability 9/10 if target

dimension ! = Ω $%
&'

2. Satisfies Oblivious Subspace Embedding with probability 9/10 if

target dimension ! = Ω $%
&' ⋅ !)

*

3. Time to sketch the tensor +⊗- is ./ q! + q ⋅ 223 +

26

Main contribution:
improve the exponential

dependence on q to
polynomial

Statistical Dimension !): = 56 7 7 + 89 :;

Prior Work: TensorSketch

• Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]

• Avron, Nguyen, and Woodruff [NeurIPS 2014] proved:

1. Satisfies Approximate Matrix Product with probability 9/10 if target

dimension ! = Ω $%
&'

2. Satisfies Oblivious Subspace Embedding with probability 9/10 if

target dimension ! = Ω $(
&' ⋅ *+

,

3. Time to sketch the tensor -⊗/ is 01 q! + q ⋅ 445 -

27

Contribution 2: improve
the quadratic dependence

on !6 to linear

Statistical Dimension !6: = 89 : : + ;< =>

Prior Work: TensorSketch

• Originally introduced by Pagh and Pham [KDD 2013], [TOCT 2013]

• Avron, Nguyen, and Woodruff [NeurIPS 2014] proved:

1. Satisfies Approximate Matrix Product with probability 9/10 if

target dimension ! = Ω $%
&'

2. Satisfies Oblivious Subspace Embedding with probability 9/10 if

target dimension ! = Ω $(
&' ⋅ !*

+

3. Time to sketch the tensor ,⊗. is /0 q! + q ⋅ 334 ,

28

Contribution 3: improve
the success probability to

1 − 7
89:;(=)

Statistical Dimension !*: = @A B B + CD E7

Main Results

• Theorem 1: there exists a distribution on linear sketches Π ∈ ℛ$×&'

such that:

1. If target dimension (= Ω +
,- then Π has the Approximate Matrix

Product property with probability 9/10

2. If target dimension (= Ω +
,- ⋅ (/

0 then Π is an Oblivious Subspace
Embedding with probability 9/10

3. For any 1 ∈ ℛ&, Π ⋅ 1⊗+ is computable in time 34 q(+ q ⋅ 778 1

29

Main Results

• Theorem 2: there exists a distribution on linear sketches Π ∈ ℛ$×&'

such that:

1. If target dimension (= *Ω ,-
./ then Π has the Approximate Matrix

Product property with high probability

2. If target dimension (= *Ω ,-
./ ⋅ (1 then Π is an Oblivious Subspace

Embedding with high probability
3. For any vector 2 ∈ ℛ&, the product Π ⋅ 2⊗, is computable in time

45 6(+ 689:;<<= 2

30

Review: TensorSketch

Π"# = ℱ&' ℱ('" ∘ ℱ(*" ∘ ⋯ ∘ ℱ(#"
• ℱ is the Fourier transform matrix and (', (*,⋯(# ∈ ℛ/×1 are

independent copies of CountSketch

31

Review: TensorSketch

Π"# = ℱ&' ℱ('" ∘ ℱ(*" ∘ ⋯ ∘ ℱ(#"
• ℱ is the Fourier transform matrix and (', (*,⋯(# ∈ ℛ/×1 are

independent copies of CountSketch
• The second moment of this estimator for " = 1 1

3 Π"⊗#
*
5 ≥ 78

2:* "⊗#
*
5

32

Our Sketch Construction

33

• Every node is an
independent instance of
some base sketch
• Leaves: sketch the input

vector
• Internal nodes: sketch the

tensor product of their
children

Our Sketch Construction

34

• Every leaf is a sketch that
runs in input sparsity time
• Internal nodes support fast

application time

Our Sketch Construction

35

• Intermediate nodes tensor only twice

• Loss in internal nodes is only !
"

#
• Number of such nodes is $(&)
• Hence ()* +, ""

, "-
≈ 1 + 1

#
2
− 1 ≈ 2

#
• In particular, there is no exponential

dependence on q 5: target dimension of
intermediate sketches

OSE for Gaussian Kernel

• The polynomial dependence of our sketch on the degree q leads to
significant improvements on sketching the Gaussian kernel in high-d

36

OSE for Gaussian Kernel

• The polynomial dependence of our sketch on the degree q leads to
significant improvements on sketching the Gaussian kernel in high-d

• Fast multipole method of Greengard and Rokhlin: suffers from curse
of dimensionality log % &

• Fourier features method of Rahimi & Recht: significantly suboptimal
runtime of '(⋅ %%* +
• Modified Fourier features of Avron, Kapralov, Musco, Musco,

Velingker, Z’ 17: Optimal for constant dimensions d but does not
apply to high dimensional data

37

Prior work

OSE for Gaussian Kernel

• Theorem 3: for any dataset !", !$,⋯ !& ∈ ℝ) such that !* $
$ ≤ , if

- ∈ ℝ&×& is the Gaussian kernel matrix defined as -*,/ = 12 34235 6
6

there exists an algorithm that computes 7 ∈ ℝ&×8 such that:

1. If target dimension 9 = :Ω <=

>6
⋅ 9@ then ZZB is an Oblivious

Subspace Embedding for kernel - with high probability
2. The runtime to compute 7 is CD ,EF2$G9@ + ,EF2$GGI J

38

