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Abstract

We prove the inequality E[(X/µ)k] ≤ ( k/µ
log(1+k/µ) )

k ≤ exp(k2/(2µ)) for sub-Poissonian

random variables X, such as Binomially or Poisson distributed variables, with mean
µ. The asymptotic behaviour E[(X/µ)k] = 1 + O(k2/µ) matches a lower bound of
1+Ω(k2/µ) for small k2/µ. This improves over previous uniform raw moment bounds
by a factor exponential in k.

1 Introduction

Suppose we sample an urn of n balls, each coloured red with probability p and otherwise
blue. What is the probability that a sample of k balls, with replacement, from this urn
consists of only red balls? Such questions are of interest to sample-efficient statistics and
the derandomisation of algorithms.

If R ∼ Binomial(n, p) denotes the number of red balls in the urn, the probability of
drawing a single red ball from the urn is R/n. Thus, the probability that a sample of k
balls from the urn is all red is given by (R/n)k, or P = E[(R/n)k] when the probability is
taken over both sample phases. Whenever the urn is large (n is large), R/n concentrates
around p, so sampling from the urn is equivalent to sampling from the original distribution
and P ≈ pk. Indeed, from Jensen’s inequality, we can see that pk is always a lower bound:
P = E[(R/n)k] ≥ E[(R/n)]k = pk. Previous authors have shown a nearly matching upper
bound of Ckpk in the range k/(np) = O(1) for some constant C > 1. (See eq. (1) below
for details.) In this note, we improve the upper bound to P ≤ pk(1 + k/(2np))k, which
shows that when k = o(

√
np), the factor Ck can be replaced by just 1 + o(1).

1.1 Related work

One direct approach to computing the Binomial moments expands them using the Stirling
numbers of the second kind: E[Xk] =

∑k
i=0

{
k
i

}
nipi, where ni = n(n − 1) · · · (n − i + 1).

This equality can be derived as a sum of the much easier to compute “factorial moments”,
E[Xk] = nkpk. See Knoblauch (2008) for details. Taking the leading two terms of the

sum, one finds that E[Xk] = (np)k
(

1 +
(
k
2

)1−p
np +O(1/n2)

)
as n → ∞. However, this
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approach does not work when k is not constant with respect to n. Similarly, for the
Poisson distribution, the moments can be expressed as the so-called Bell (or Touchard)
polynomials in µ: E[Xk] =

∑k
i=0

{
k
i

}
µi. This sum gives a simple lower bound E[Xk] ≥{

k
k

}
µk +

{
k
k−1
}
µk−1 = µk(1 + k(k−1)

2µ ), matching our upper bound asymptotically when
k = O(

√
µ). However, as in the Binomial case, the sum does not easily yield a uniform

bound. We give the details of both lower bounds in Section 2.2.
A different approach uses the powerful results on moments of independent random

variables by Lata la (1997) and Pinelis (1995). In the case of Binomial and Poisson random
variables, they yield:(

c
k/µ

log(1 + k/µ)

)k
≤ E[(X/µ)k] ≤

(
C

k/µ

log(1 + k/µ)

)k
(1)

for some universal constants c < 1 < C. The bound is tight up to the factor (C/c)k, which
is negligible when the overall growth is O(kk). However, when k/µ → 0, we expect the
upper bound to be 1, and so the factor Ck in the upper bound can be overwhelmingly
large.

A third option is to use a Rosenthal bound, such as the following by Berend and Tassa
(2010), (see also Johnson et al., 1985):

E[Xk] ≤ Bk max{µ, µk}. (2)

Here, Bk is the kth Bell number, which Berend and Tassa show satisfies the uniform

bound Bk <
(

0.792k
log(k+1)

)k
. For large k, a precise asymptotic bound, B

1/k
k = k

e log k (1 + o(1)),

is given by (e.g. de Bruijn, 1981; Ibragimov and Sharakhmetov, 1998). Unfortunately,
the Rosenthal bound is incomparable to the other bounds in this paper when µ < 1, as
it grows with µ rather than µk. However, for µ ≥ 1 and integral, we show a matching
asymptotic lower bound in the second half of Section 2.2. That indicates that the upper
bound of this paper could be improved by a factor e−k for large k.

Finally, Ostrovsky and Sirota (2017) give another asymptotically sharp bound in a
recent preprint. Using a technique based on moment generating functions, similar to
this paper, they bound the Bell polynomial, which as discussed above, is equivalent to
bounding the moments of a Poisson random variable. The bound holds when k ≥ 2µ:

E[(X/µ)k]1/k ≤ k/µ

e log(k/µ)

(
1 + C(µ)

log log(k/µ)

log(k/µ)

)
if k ≥ 2µ, (3)

where C(µ) > 0 is some “constant” depending only on µ. In the range k < 2µ, Ostrovsky
and Sirota only gives the bound E[(X/µ)k] ≤ 8.9758k, so similarly to the other bounds
presented, it loses an exponential factor in k compared to Theorem 1 below, for smaller
k.

2 Bounds

The theorem considers “sub-Poissonian” random variables, which are variables X, satis-
fying the requirement E[exp(tX)] ≤ exp(µ(et − 1)). Such sub-Poissonian include many
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simple distributions, such as the Poisson or Binomial distribution. We give more examples
in Section 3.

Theorem 1. Let X be a non-negative random variable with mean µ > 0 and moment-
generating function E[exp(tX)] bounded by exp(µ(et−1)) for all t > 0. Then for all k > 0
and any α > 0:

E[(X/µ)k] ≤
(

k/µ

e1−α log(1 + αk/µ)

)k
.

The theorem has a free parameter, α, which is optimally set such that 1 + αk/µ =
eW (k/µ), where W is the Lambert-W function, which is defined by W (x)eW (x) = x.1 In
practice the following two corollaries may be easier to work with.

Corollary 1.

E[(X/µ)k] ≤
(

k/µ

log(1 + k/µ)

)k
≤
(

1 +
k

2µ

)k
≤ exp

(
k2

2µ

)
.

Proof. For the first inequality, set α = 1 in Theorem 1. The second bound, we use a
standard logarithmic inequality, x

log(1+x) ≤ 1+x/2 (see e.g. Topsøe, 2007, eq. 6). The last

bound is the standard 1 + x ≤ exp(x).

In the range k = O(
√
µ) we show a matching lower bound of 1+Ω(k2/µ) in Section 2.2,

eq. (9).

Corollary 2. Let x = k/µ, then

E[(X/µ)k]1/k ≤ x e1/ log(e+x)

e log(1 + x/ log(e+ x))
=

x

e log x

(
1 +O

(
log log x

log x

))
as x→∞.

(4)

Proof. Take α = 1/ log(e+ x). For x > 0 we have log(e+ x) > 0 and so α > 0 as required
by Theorem 1.

Corollary 2 matches our lower bound in eq. (10), as well as Ostrovsky and Sirota in
eq. (3), but without the restriction on the range of k/µ.

2.1 The proof

Technically our bound is shown using the moment-generating function and some new sharp
inequalities involving the Lambert-W function. We will use the following lemma:

Lemma 1 (Hoorfar and Hassani, 2008). For all y > 1/e and x > −1/e,

eW (x) ≤ x+ y

1 + log y
. (5)

1The Lambert-W function has multiple branches. We always refer to the main one (sometimes called
the 0th), in which W (x) and x are both positive.
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We present an elementary proof of this fact for completeness:

Proof. Starting from 1 + t ≤ et, substitute log(y) − t for t to get 1 + log y − t ≤ ye−t.
Multiplying by et we get et(1 + log y) ≤ tet + y. Let t = W (x) s.t. tet = x. Rearranging,
we get eq. (5).

Taking y = eW (x) in eq. (5) makes the two sides equal, so we can think of Lemma 1 as
a way to turn a rough estimate into an upper bound.

We apply Lemma 1 to show a new bound on W (x) in a similar style. This lemma will
be the main ingredient in proving Theorem 1.

Lemma 2. For all y > 1 and x > 0,

1

W (x)
+W (x) ≤ y

x
+ log

(
x

log y

)
,

with equality if y = eW (x).

Proof. The proof uses the identities W (x) = log( x
W (x)) and 1

W (x) = 1
x exp(W (x)) which are

simple rewritings of the definition W (x)eW (x) = x. The main idea is to introduce a new
variable z > 0, to be determined later, which allows us to control the effect of applying the
logarithmic inequality log x ≥ 1 − 1/x. We also use Lemma 1, which introduces another
new variable y > 1 to be determined.

We bound:

1

W (x)
+W (x) =

1

W (x)
+ log

(
x

W (x)

)
=

1

W (x)
+ log

(x
z

)
− log

(
W (x)

z

)
≤ 1

W (x)
+ log

(x
z

)
−
(

1− z

W (x)

)
=

1 + z

W (x)
− 1 + log

(x
z

)
= eW (x) 1 + z

x
− 1 + log

(x
z

)
≤ x+ y

1 + log(y)

1 + z

x
− 1 + log

(x
z

)
.

=
y

x
+ log

(
x

log y

)
.

Here the last two steps come from the inequality eq. (5) in its general form, and the
substitution z = log y. We can check that equality follows all the way through if we let
y = eW (x).

We are now ready to prove the main theorem of the paper:
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Proof of Theorem 1. Let m(t) = E[exp(tX)] be the moment-generating function. We will
bound the moments of X by

E[Xk] ≤ m(t)

(
k

et

)k
, (6)

which holds for all k ≥ 0 and t > 0. This follows from the basic inequality 1 + z ≤ ez,
where we substitute tz/k − 1 for z to get tz/k ≤ etz/k−1 =⇒ zk ≤ etz(k/(et))k. Letting
z = X and taking expectations, we get eq. (6).

We now define x = k/µ and take t such that tet = x. In the notation of the Lambert-W
function, this means t = W (x). We note that t > 0 whenever x > 0. We proceed to bound
the moments of X/µ using eq. (6):

E[(X/µ)k] ≤ m(t)

(
k

et

)k
µ−k

≤ exp
(
µ(et − 1)

)( k

eµt

)k
= exp

(
µ(x/t− 1)

)(et
e

)k
(7)

= exp
(
(k/x)(x/t− 1) + k(t− 1)

)
= exp(kf(x)), (8)

where we define f(x) := 1/t− 1/x+ t− 1. Here eq. (7) came from the simple rewriting of
the definition of t, 1/t = et/x

We continue to bound f(x) using Lemma 2:

f(x) =
1

W (x)
+W (x)− 1− 1

x

≤ y

x
+ log

(
x

log y

)
− 1− 1

x

= α− 1 + log

(
x

log(1 + αx)

)
,

taking y = 1 + αx, which is greater than 1 when α and x are both greather than 0.
Backing up, we have shown

E[(X/µ)k] ≤ exp(kf(x)) ≤
(

x

e1−α log(1 + αx)

)k
,

which finishes the proof.

2.2 Lower bound

As mentioned in the introduction, the expansion for the Poisson moments E[Xk] =∑k
i=0

{
k
i

}
µi gives a simple lower bound by taking the two highest terms. We note that{

k
k

}
= 1 and

{
k
k−1
}

=
(
k
2

)
to get

E[Xk] ≥ µk
(

1 +
k(k − 1)

2µ

)
, (9)
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matching Theorem 1 asymptotically for k = O(
√
µ).

The expansion for Binomial moments E[Xk] =
∑k

i=0

{
k
i

}
nipi yields a similar lower

bound

E[Xk] ≥ nkpk +

(
k

2

)
nk−1pk−1

= (np)k
(
nk

nk

)(
1 +

(
k

2

)
1

(n− k + 1)p

)
= (np)k

(
k−1∏
i=0

1− i

n

)(
1 +

(
k

2

)
1

(n− k + 1)p

)
≥ (np)k

(
1−

(
k

2

)
1

n

)(
1 +

(
k

2

)
1

np

)
= (np)k

(
1 +

(
k

2

)
1− p
np

(
1−

(
k

2

)
1

n

))
,

which matches Theorem 1 for k = O(
√
µ) and p not too close to 1.

We will investigate some more precise lower bounds as k/µ gets large. As mentioned
briefly in the introduction, there is a correspondence between the moments of a Poisson
random variable and the Bell polynomials defined by B(k, µ) =

∑
i

{
k
i

}
µi. In particular,

E[Xk] = B(k, µ), if µ is the mean of the Poissonian random variable. The Bell polynomials
are so named because B(k, 1) is the kth Bell number. By Dobiński’s formula B(k, 1) =
1
e

∑∞
i=0

ik

i! the Bell numbers are generalised for real k. We write these as Bx = B(x, 1).
We give a lower bound for E[(X/µ)k] by showing the following simple connection

between the Bell polynomials and Bell numbers:

Theorem 2. Let k be a positive real number and µ ≥ 1 be an integer. Then

B(k, µ)/µk ≥ Bµ
k/µ.

While the proof below assumes µ is an integer, we will conjecture Theorem 2 to be true
for any µ ≥ 1. Now by de Bruijn’s (1981) asymptotic expression for the Bell numbers:

E[(X/µ)k]1/k ≥ Bµ/k
k/µ =

k/µ

e log(k/µ)

(
1 + Θ

(
log log(k/µ)

log(k/µ)

))
as k/µ→∞. (10)

matching our upper bound, eq. (4), the upper bound of Ostrovsky and Sirota, eq. (3), for
large k, as well as Lata la’s uniform lower bound with a different constant.

Proof of Theorem 2. Let X,X1, . . . , Xµ be i.i.d. Poisson variables with mean 1, then
S =

∑µ
i=1Xi is Poisson with mean µ. We write ‖X‖k = E[Xk]1/k. Then by the AG

inequality:

‖S/µ‖k =

∥∥∥∥∥ 1

µ

µ∑
i=1

Xi

∥∥∥∥∥
k

≥

∥∥∥∥∥
( µ∏
i=1

Xi

)1/µ
∥∥∥∥∥
k

=

∥∥∥∥∥
µ∏
i=1

Xi

∥∥∥∥∥
1/µ

k/µ

=

(
µ∏
i=1

‖Xi‖k/µ

)1/µ

= ‖X‖k/µ.

(11)
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Since X has mean 1 we have ‖X‖k/µ = B
µ/k
k/µ , and as S has mean µ we have ‖S/µ‖k =

B(k, µ)1/k/µ. Thus, taking kth powers, eq. (11) is what we wanted to show.

For small k/µ this bound is less interesting since Bx → 0 as x → 0, rather than 1 as
our upper bound. However, it is pretty tight, as we conjecture by the following matching
upper bound in terms of the Bell numbers:

Conjecture 1. For all k > 0 and µ ≥ 1,

B
1/(k/µ)
k/µ ≤ B(k, µ)1/k

µ
≤ B1/(k/µ+1)

k/µ+1 .

Furthermore, for 0 < µ ≤ 1, B(k,µ)1/k

µ ≤ B1/(k/µ)
k/µ .

While the upper bound appears true numerically, it can’t follow from our moment-
generating function bound eq. (8), since it drops below that for k/µ bigger than 40. The
conjectured upper bound is even incomparable with our Theorem 1, since it is slightly
above k/µ

log(1+k/µ) for very small k/µ. The conjectured bound is weaker than eq. (2) by

Berend and Tassa (2010) in the region k < 2 and µ < 1, but for all other parameters, it
is substantially tighter.

3 Sub-Poissonian Random Variables

We call a non-negative random variable X sub-Poissonian if E[X] = µ and the moment-
generating function, mgf., E[exp(tX)] ≤ exp(µ(et − 1)) for all t > 0. We will briefly show
that this notion includes all sums of bounded random variables, such as the Binomial
distribution.

If X1, . . . , Xn are sub-Poissonian with mgf. m1(t), . . . ,mn(t) and mean µ1, . . . , µn
respectively, then

∑
iXi is sub-Poissonian as well, since

E
[

exp
(
t
∑
i

Xi

)]
=
∏
i

mi(t) ≤
∏
i

exp
(
µi(e

t − 1)
)

= exp
((∑

i

µi
)(
et − 1

))
.

Next, a random variable bounded in [0, 1] with mean µ has mgf.

E[exp(tX)] = 1 +
∞∑
k=1

tk E[Xk]

k!
≤ 1 + µ

∞∑
k=1

tk E[1k−1]

k!
= 1 + µ(et − 1) ≤ exp(µ(et − 1)).

Hence if X = X1 + · · · + Xn where each Xi ∈ [0, 1] we have µ = E[X] =
∑

i E[Xi] and

by Theorem 1 that E[(X/µ)k] ≤ k/µ
log(k/µ+1) . In particular this captures sum of Bernoulli

variables with distinct probabilities.
An example of a non-sub-Poissonian distribution is the geometric distribution with

mean µ. This has moment generating function m(t) = 1
1−µ(et−1) , which is larger than

exp(µ(et − 1)) for all t > 0. However, likely, similar methods to those in the proof of
Theorem 1 will still apply to bound its moments.
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