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Abstract

We show that approximate similarity (near neighbour) search can be solved
in high dimensions with performance matching state of the art (data indepen-
dent) Locality Sensitive Hashing, but with a guarantee of no false negatives.
Specifically, we give two data structures for common problems.

For c-approximate near neighbour in Hamming space we get query time
dn1/c+o(1) and space dn1+1/c+o(1) matching that of [Indyk and Motwani, 1998]
and answering a long standing open question from [Indyk, 2000a] and [Pagh,
2016] in the affirmative. By means of a new deterministic reduction from `1
to Hamming we also solve `1 and `2 with query time d2n1/c+o(1) and space
d2n1+1/c+o(1).

For (s1, s2)-approximate Jaccard similarity we get query time dnρ+o(1) and
space dn1+ρ+o(1), ρ = log 1+s1

2s1
/ log 1+s2

2s2
, when sets have equal size, matching the

performance of [Pagh and Christiani, 2017].
The algorithms are based on space partitions, as with classic LSH, but we

construct these using a combination of brute force, tensoring, perfect hashing
and splitter functions à la [Naor et al., 1995]. We also show a new dimensionality
reduction lemma with 1-sided error.

1 Introduction

Locality Sensitive Hashing has been a leading approach to high dimensional similarity
search (nearest neighbour search) data structures for the last twenty years. Intense
research [Indyk and Motwani, 1998, Gionis et al., 1999, Kushilevitz et al., 2000, Indyk,
2000b, Indyk, 2001, Charikar, 2002, Datar et al., 2004, Lv et al., 2007, Panigrahy,
2006, Andoni and Indyk, 2006, Andoni et al., 2014, Andoni et al., 2017a, Becker
et al., 2016, Ahle et al., 2017, Aumüller et al., 2017] has applied the concept of
space partitioning to many different problems and similarity spaces. These data
structures are popular in particular because of their ability to overcome the ‘curse of
dimensionality’ and conditional lower bounds by [Williams, 2005], and give sub-linear
query time on worst case instances. They achieve this by being approximate and
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Monte Carlo, meaning they may return a point that is slightly further away than the
nearest, and with a small probability they may completely fail to return any nearby
point.

Definition 1 ((c, r)-Approximate Near Neighbour). Given a set P of n data points
in a metric space (X,dist), build a data structure, such that given any q ∈ X, for
which there is an x ∈ P with dist(q, x) ≤ r, we return a x′ ∈ P with dist(q, x′) ≤ cr.

A classic problem in high dimensional geometry has been whether data structures
existed for (c, r)-Approximate Near Neighbour with Las Vegas guarantees, and
performance matching that of Locality Sensitive Hashing. That is, whether we
could guarantee that a query will always return an approximate near neighbour, if a
near neighbour exists; or simply, if we could rule out false negatives? The problem
has seen practical importance as well as theoretical. There is in general no way of
verifying that an LSH algorithm is correct when it says ‘no near neighbours’ - other
than iterating over every point in the set, in which case the data structure is entirely
pointless. This means LSH algorithms can’t be used for many critical applications,
such as finger print data bases. Even more applied, it has been observed that tuning
the error probability parameter is hard to do well, when implementing LSH [Gionis
et al., 1999, Arya et al., 1998]. A Las Vegas data structure entirely removes this
problem. Different authors have described the problem with different names, such as
‘Las Vegas’ [Indyk, 2000a], ‘Have no false negatives’ [Goswami et al., 2017, Pagh,
2016], ‘Have total recall’ [Pham and Pagh, 2016], ‘Are exact’ [Arasu et al., 2006] and
‘Are explicit’ [Karppa et al., 2016].

Recent years have shown serious progress towards finally solving the problem. In
particular [Pagh, 2016] showed that the problem in Hamming space admits a Las
Vegas algorithm with query time dn1.38/c+o(1), matching the dn1/c data structure
of [Indyk and Motwani, 1998] up to a constant factor in the exponent. In this
paper we give an algorithm in the Locality Sensitive Filter framework [Becker et al.,
2016, Christiani, 2017], which not only removes the factor 1.38, but improves to
dn1/(2c−1)+o(1) in the case cr ≈ d/2, matching the algorithms of [Andoni et al., 2015]
for Hamming space.

We would like to find an approach to Las Vegas LSH that generalizes to the many
different situations where LSH is useful. Towards that goal, we present as second
algorithm for the approximate similarity search problem under Braun-Blanquet
similarity, which is defined for sets x, y ⊆ [d] as sim(x, y) = ∣x ∩ y∣/max(∣x∣, ∣y∣). We
refer to the following problem definition:

Definition 2 (Approximate similarity search). Let P ⊆ P([d]) be a set of ∣P ∣ = n
subsets of [d]; (here P(X) denotes the powerset of X.) let sim ∶ P([d]) ×P([d])→
[0,1] be a similarity measure. For given s1, s2 ∈ [0,1], s1 > s2, a solution to the

“(s1, s2)-similarity search problem under sim” is a data structure that supports the
following query operation: on input q ⊆ [d], for which there exists a set x ∈ P with
sim(x, q) ≥ s1, return x′ ∈ P with sim(x′, q) > s2.
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The problem has traditionally been solved using the Min-Hash LSH [Broder et al.,
1997, Broder, 1997], which combined with the results of Indyk and Motwani [Indyk
and Motwani, 1998] gives a data structure with query time dnρ and space dn1+ρ for
ρ = log s1/ log s2. Recently it was shown by [Pagh and Christiani, 2017] that this
could be improved for vectors of equal weight to ρ = log 2s1

1+s1 / log 2s2
1+s2 . We show that

it is possible to achieve this recent result with a data structure that has no false
negatives.

1.1 Summary of Contributions

We present the first Las Vegas algorithm for approximate near neighbour search,
which gives sub-linear query time for any approximation factor c > 1. This solves a
long standing open question from [Indyk, 2000a] and [Pagh, 2016]. In particular we
get the following two theorems:

Theorem 1. Let X = {0, 1}d be the Hamming space with metric dist(x, y) = ∥x⊕y∥ ∈
[0, d] where ⊕ is “xor” or addition in Z2. For every choice of 0 < r, 1 < c and
cr ≤ d/2, we can solve the (c, r)-approximate near neighbour problem in Hamming
space with query time dnρ and space usage dn + n1+ρ where ρ = 1/c + Ô((logn)−1/4).

Note: Ô hides log logn factors.

Corollary 1. When r/d = Ω((logn)−1/6), we get the improved exponent ρ = 1−cr/d
c(1−r/d)+

Ô((logn)−1/3d/r).

This improves upon theorem 1 when r/d is constant (or slightly sub-constant),
including in the important “random case”, when r/d = 1/(2c) where we get ρ =
1/(2c − 1) + o(1).

Theorem 2. Let sim be the Braun-Blanquet similarity sim(x, y) = ∣x∩y∣/max(∣x∣, ∣y∣).
For every choice of constants 0 < s2 < s1 < 1, we can solve the (s1, s2)-similarity prob-
lem over sim with query time dnρ and space usage dn+n1+ρ where ρ = log s1/ log s2 +
Ô((logn)−1/2).

For sets of fixed size w, the dn terms above can be improved to wn. It is also
possible to let s1 and s2 depend on n with some more work.

The first result matches the lower bounds by [O’Donnell et al., 2014] for “data
independent” LSH data structures for Hamming distance and improves upon [Pagh,
2016] by a factor of log 4 > 1.38 in the exponent. By deterministic reductions from
`2 to `1 [Indyk, 2007] and `1 to hamming (appendix 6.1), this also gives the best
currently known Las Vegas data structures for `1 and `2 in Rd. The second result
matches the corresponding lower bounds by [Pagh and Christiani, 2017] for Braun-
Blanquet similarity and, by reduction, Jaccard similarity. See table 1 for more
comparisons.
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Detaching the data structures from our constructions, we give the first explicit
constructions of large Turán Systems [Sidorenko, 1995], which are families T of
k-subsets of [n], such that any r-subset of [n] is contained in a set in T . Lemma 5
constructs (n, k, r)-Turán Systems using (n/k)reχ sets, where χ = O(√r log r+ log k+
log logn). For small values of k this is sharp with the lower bound of (n

r
)/(kr), and

our systems can be efficiently decoded, which is likely to have other algorithmic
applications.

1.2 Background and Related Work

The arguably most successful technique for similarity search in high dimensions
is Locality-Sensitive Hashing (LSH), introduced in 1998 by [Indyk and Motwani,
1998, Har-Peled et al., 2012]. The idea is to make a random space partition in
which similar points are likely to be stored in the same region, thus allowing the
search space to be pruned substantially. The granularity of the space partition (the
size/number of regions) is chosen to balance the expected number of points searched
against keeping a (reasonably) small probability of pruning away the actual nearest
point. To ensure a high probability of success (good recall) one repeats the above
construction, independently at random, a small polynomial (in n) number of times.

In [Pagh, 2016, Arasu et al., 2006] it was shown that one could change the above
algorithm to not do the repetitions independently. (Eliminating the error probability
of an algorithm by independent repetitions, of course, takes an infinite number of
repetitions.) By making correlated repetitions, it was shown possible to reach zero
false negatives much faster, after only polynomially many repetitions. This means,
for example, that they needed more repetitions than LSH does to get 0.99 success
rate, but fewer than LSH needs for success rate 1 − 2−n.

An alternative to LSH was introduced by [Becker et al., 2016, Dubiner, 2010]. It
is referred to as Locality Sensitive Filters, or LSF. While it achieves the same bounds
as LSH, LSF has the advantage of giving more control to the algorithm designer
for balancing different performance metrics. For example, it typically allows better
results for low dimensional data, d = O(logn), and space/time trade-offs [Andoni
et al., 2017a]. The idea is to sample a large number of random sections of the space.
In contrast to LSH these sections are not necessarily partitions and may overlap
heavily. For example, for points on the sphere Sd−1 the sections may be defined
by balls around the points of a spherical code. One issue compared to LSH is that
the number of sections in LSF is very large. This means we need to impose some
structure so we can efficiently find all sections containing a particular point. With
LSH the space partitioning automatically provided such an algorithm, but for LSF
it is common to use a kind of random product code. (An interesting alternative
is [Pagh and Christiani, 2017], which uses a random branching processes.) LSF is
similar to LSH in that it only approaches 100% success rate as the number of sections
goes to infinity.

The work in this paper can be viewed as way of constructing correlated, efficiently
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decodable filters for Hamming space and Braun-Blanquet similarity. That is, our
filters guarantee that any two close points are contained in a shared section, without
having an infinite number of sections. Indeed the number of sections needed is equal
to that needed by random constructions for achieving constant success probability, up
to no(1) factors. It is not crucial that our algorithms are in the LSF framework rather
than LSH. Our techniques can make correlated LSH space partitions of optimal size
as well as filters. However the more general LSF framework allows for us to better
show of the strength of the techniques.

One very important line of LSH/LSF research, that we don’t touch upon in this
paper, is that of data dependency. In the seminal papers [Andoni et al., 2014, Andoni
and Razenshteyn, 2015, Andoni et al., 2017a] it was shown that the performance
of space partition based data structures can be improved, even in the worst case,
by considering the layout of the points in the data base. Using clustering, certain
bad cases for LSH/LSF can be removed, leaving only the case of “near random”
points to be considered, on which LSH works very well. It seems possible to make
Las Vegas versions of these algorithms as well, since our approach gives the optimal
performance in these near random cases. However one would need to find a way to
derandomize the randomized clustering step used in their approach.

There is of course also a literature of deterministic and Las Vegas data structures
not using LSH. As a baseline, we note that the “brute force” algorithm that stores
every data point in a hash table, and given a query, q ∈ {0,1}d, looks up every

∑rk=1 (
d
k
) point of Hamming distance most r. This requires r log(d/r) < logn to be

sub-linear, so for a typical example of d = (logn)2 and r = d/10 it won’t be practical.
In [Cole et al., 2004] this was somewhat improved to yield n(logn)r time, but it
still requires r = O( logn

log logn) for queries to be sub-linear. We can also imagine storing

the nearest neighbour for every point in {0,1}d. Such an approach would give fast
(constant time) queries, but the space required would be exponential in r.

In Euclidean space (`2 metric) the classical K-d tree algorithm [Bentley, 1975] is
of course deterministic, but it has query time n1−1/d, so we need d = O(1) for it to
be strongly sub-linear. Allowing approximation, but still deterministic, [Arya et al.,
1998] found a ( d

c−1)
d algorithm for c > 1 approximation. They thus get sublinear

queries for d = O( logn
log logn).

For large approximation factors [Har-Peled et al., 2012] gave a deterministic
data structure with query time O(d logn), but space and preprocessing more than
n ⋅ O(1/(c − 1))d. In a different line of work, [Indyk, 2000a] gave a deterministic

(dε−1 logn)O(1) query time, fully deterministic algorithm with space usage nO(1/ε6)

for a 3 + ε approximation.
See Table 1 for an easier comparison of the different results and spaces.
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Reference Space Exponent,
search
time

Comments

[Bentley, 1975] `2 1 − 1/d Exact algorithm, Fully deterministic.

[Cole et al., 2004] Hamming r log logn
logn Sub-linear for r < logn

log logn . Exact.

[Arya et al., 1998] `2 d
log(d/(c−1))

logn Sub-linear for d < logn
log logn .

[Har-Peled et al.,
2012]

Hamming o(1) c-approximation, Fully deterministic,
(1/(c − 1))d space.

[Indyk, 2000a] Hamming o(1) (3+ ε)-approximation, Fully deterministic,

nΩ(1/ε6) space.

[Arasu et al.,
2006]

Hamming ≈ 3/c The paper makes no theoretical claims on
the exponent.

[Pagh, 2016] Hamming 1.38/c Exponent 1/c when r = o(logn) or
(logn)/(cr) ∈ N.

[Pacuk et al.,
2016]

`p O(d1−1/p/c) Sub-linear for `2 when c = ω(
√
d).

This paper Hamming,
`1, `2

1/c Actual exponent is
1−cr/d
c(1−r/d) which im-

proves to 1/(2c − 1) for cr ≈ d/2.

[Pagh, 2016] Braun-
Blanquet

1.38 1−b1
1−b2 Via reduction to Hamming. Requires sets

of equal weight.

This paper Braun-
Blanquet

log 1/b1
log 1/b2 See [Pagh and Christiani, 2017] figure 2

for a comparison with [Pagh, 2016].

Table 1: Comparison of Las Vegas algorithms for high dimensional near neighbour
problems. The exponent is the value ρ, such that the data structure has query time
nρ+o(1). All listed algorithms, except for [Indyk, 2000a] use less than n2 space. All
algorithms give c-approximations, except for the first two, and for [Indyk, 2000a],
which is a (3 + ε)-approximation.
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1.3 Techniques

Our main new technique is a combination of ‘splitters’ as defined by [Naor et al.,
1995, Alon et al., 2006], and ‘tensoring’ which is a common technique in the LSH
literature.

Tensoring means constructing a large space partition P ⊆ P(X) by taking multiple
smaller random partitions P1, P2, . . . and taking all the intersections P = {p1∩p2, . . . ∣
p1 ∈ P1, p2 ∈ P2, . . .}. Often the implicit partition P is nearly as good as a fully
random partition of equal size, while it is cheaper to store in memory and allows
much faster lookups of which section covers a given point. In this paper we are
particularly interested in Pi’s that partition different small sub-spaces, such that P
is used to increase the dimension of a small, explicit, good partition.

Unfortunately tensoring doesn’t seem to be directly applicable for deterministic
constructions, since deterministic space partitions tend to have some overhead that
gets amplified by the product construction. This is the reason why [Pagh, 2016]
constructs hash functions directly using algebraic methods, rather than starting with
a small hash function and ‘amplifying’ as is common for LSH. Algebraic methods
are great when they exist, but they tend to be hard to find, and it would be a
tough order to find them for every similarity measure we would like to make a data
structure for.

It turns out we can use splitters to help make tensoring work deterministically.
Roughly, these are generalizations of perfect hash functions. However, where a
(d,m, k)-perfect hash family guarantees that for any set S ⊆ [d] of size k, there is
a function π ∶ [d] → [m] such that ∣π(S)∣ = k, a (d,m)-splitter instead guarantees
that the is some π such that ∣S ∩ π−1(i)∣ = d/m for each i = 1, . . . ,m; or as close as
possible if m does not divide d. That is, for any S there is some π that ‘splits’ S
evenly between m buckets.

Using splitters with tensoring, we greatly limit the number of combinations of
smaller space partitions that are needed to guarantee covering. We use this to amplify
partitions found probabilistically and verified deterministically. The random aspect
is however only for convenience, since the greedy set cover algorithm would suffice
as well, as is done in [Alon et al., 2006]. We don’t quite get a general reduction from
Monte Carlo to Las Vegas LSH data structures, but we show how two state of the
art algorithms may be converted at a negligible overhead.

A final technique to make everything come together is the use of dimensionality
reductions. We can’t quite use the standard bit-sampling and Johnson–Lindenstrauss
lemmas, since those may (though unlikely) increase the distance between origi-
nally near points. Instead we use two dimensionality reduction lemmas based
on partitioning. Similarly to [Pagh, 2016] and others, we fix a random permuta-
tion. Then given a vector x ∈ {0,1}d we permute the coordinates and partition
into blocks x1, . . . , xd/B of size B. For some linear distance function, dist(x, y) =
dist(x1, y1) + ⋅ ⋅ ⋅ + dist(xd/B, yd/B), which implies that for some i we must have
dist(xi, yi) ≤ dist(x, y)B/d. Running the algorithm separately for each set of blocks
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guarantee that we no pair gets mapped too far away from each other, while the
randomness of the permutation lets us apply standard Chernoff bounds on how close
the remaining points get.

Partitioning, however, doesn’t work well if distances are very small, cr << d. This
is because we need B = d

cr ε
−2 logn to get the said Chernoff bounds on distances for

points at distance cr. We solve this problem by hashing coordinates into buckets
of ≈ cr/ε and taking the xor of each bucket. This has the effect of increasing
distances and thereby allowing us to partition into blocks of size ≈ ε−3 logn. A similar
technique was used for dimensionality reduction in [Kushilevitz et al., 2000], but
without deterministic guarantees. The problem is tackled fully deterministically
in [Indyk, 2000a] using codes, but with the slightly worse bound of ε−4 logn.

For the second problem of Braun-Blanquet similarity we also need a way to
reduce the dimension to a manageble size. Using randomized reductions (for example
partitioning), we can reduce to ∣x ∩ y∣ ∼ logn without introducing too many false
positives. However we could easily have e.g. universe size d = (logn)100 and
∣x∣ = ∣y∣ = (logn)2, which is much too high a dimension for our splitter technique to
work. There is probably no hope of actually reducing d, since increasing ∣x∣/d and
∣y∣/d makes the problem we are trying to solve easier, and such a reduction would
thus break LSH lower bounds.

Instead we introduce tensoring technique based on perfect hash functions, which
allows us to create Turán Systems with very large universe sizes for very little
overhead.

In the process of showing our results, we show a useful bound on the ratio between
two binomial coefficients, which may be of separate interest.

1.4 Notation

We use [d] = {1, . . . , d} as convenient notation sets of a given size. Somewhat
overloading notation, for a predicate P , we also use the Iversonian notation [P ] for
a value that is 1 if P is true and 0 otherwise.

For a set x ⊆ [d], we will sometimes think of it as a subset of the universe [d],
and at other times as a vector x ∈ {0,1}d, where xi = 1 indicates that i ∈ x. This
correspondence goes further, and we may refer to the set size ∣x∣ or the vector norm
∥x∥, which is always the Hamming norm, ∥x∥ = ∑di=1 xi. Similarly for two sets or
points x, y ∈ {0,1}d, we may refer to the inner product ⟨x, y⟩ = ∑di=1 xiyi or to the
size of their intersection ∣x ∩ y∣.

We use S ×T = {(s, t) ∶ s ∈ S, t ∈ T} for the cross product, and x⊕y for symmetric
difference (or ‘xor’). P(X) is the power set of X, such that x ⊆X ≡ x ∈ P(X). (X

k
)

denotes all subsets of X of size k.
For at set S ⊆ [d] and a vector x ∈ {0, 1}d, we let xS be the projection of x onto S.

This is an ∣S∣-dimensional vector, consisting of the coordinates xS = ⟨xi ∶ i ∈ S⟩ in the
natural order of i. For a function f ∶ [a] → [b] we let f−1 ∶ P([b]) → P([a]) be the
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‘pullback’ of f , such that f−1(S) = {i ∈ [a] ∣ f(i) ∈ S}. For example, for x ∈ {0,1}a,
we may write xf−1(1) to be the vector x projected onto the coordinates of f−1({1}).

Sometimes when a variable is ω(1) we may assume it is integral, when this is
achievable easily by rounding that only perturbs the result by an insignificant o(1)
amount.

The functional poly(a, b, . . . ) means any polynomial combination of the argu-
ments, essentially the same set as (a ⋅ b . . . )±O(1).

1.5 Organization

We start by laying out the general framework shared between our algorithms. We
use a relatively common approach to modern near neighbour data structures, but
the overview also helps establish some notation used in the later sections.

The second part of section 2 describes the main ideas and intuition on how we
achieve our results. In particular it defines the concept of ‘splitters’ and how they
may be used to create list-decodable codes for various measures. The section finally
touches upon the issues we encounter on dimensionality reduction, which we can use
to an extent, but which is restricted by our requirement of ‘1-sided’ errors.

In sections 3 and 4 we prove the main theorems from the introduction. The
sections follow a similar pattern: First we introduce a filter family and prove its
existence, then we show a dimensionality reduction lemma and analyze the resulting
algorithm.

2 Overview

Both algorithms in this paper follow the structure of the Locality Sensitive Filter
framework, which is as follows: For a given universe U , we define a family F of
‘filters’ equipped with a (possibly random) function F ∶ U → P(F), which assigns
every point a set of filters.

Typically, F will be a generous covering of U , and F (x) will be the sets that
cover the point x. Critically, any pair x, y that is close/similar enough in U must
share a filter, such that F (X) ∩ F (Y ) ≠ ∅. Further we will want that pairs x, y that
are sufficiently far/dissimilar only rarely share a filter, such that E[∣F (x) ∩ F (Y )∣]
is tiny.

To construct the data structure, we are given a set of data points P ⊆ U . We
compute F (x) for every x ∈ P and store the points in a (hash) map T ∶ F → P(P ).
For any point x ∈ P and filter f ∈ F (x), we store x ∈ T [f]. Note that the same x
may be stored in multiple different buckets.

To query the data structure with a point x ∈ U , we compute the distance/similarity
between x and every point y ∈ ⋃f∈F (x) T [f], returning the first suitable candidate, if
any.

9



There are many possible variations of the scheme, such as sampling F from a
distribution of filter families. In case we want a data structure with space/time
trade-offs, we can use different F functions for data points and query points. However
in this article we will not include these extensions.

We note that while it is easy to delete and insert new points in the data structure
after creation, we are going to choose F parametrized on the total number of points,
∣P ∣. This makes our data structure essentially static, but luckily [Overmars and van
Leeuwen, 1981] have found general, deterministic reductions from dynamic to static
data structures.

2.1 Intuition

The main challenge in this paper will be the construction of filter families F which
are: (i) not too large; (ii) have a F (⋅) function that is efficient to evaluate; and most
importantly, (iii) guarantee that all sufficiently close/similar points always share a
filter. The last requirement is what makes our algorithm different from previous
results, which only had this guarantee probabilistically.

For concreteness, let us consider the Hamming space problem. Observe that for
very low dimensional spaces, d = (1 + o(1)) logn, we can afford to spend exponential
time designing a filter family. In particular we can formulate a set cover problem,
in which we wish to cover each pair of points at distance ≤ r with Hamming
balls of radius s. This gives a family that is not much larger than what can be
achieved probabilistically, and which is guaranteed to work. Furthermore, this family
has sublinear size (no(1)), making F (x) efficient to evaluate, since we can simply
enumerate all of the Hamming balls and check if x is contained.

The challenge is to scale this approach up to general d.
Using a standard approach of randomly partitioning the coordinates, we can

reduce the dimension to (logn)1+ε. This is basically dimensionality reduction by bit
sampling, but it produces d/ logn different subspaces, such that for any pair x, y
there is at least one subspace in which their distance is not increased. We are left
with a gap from (logn)1+ε down to logn. Bridging this gap turns out to require a
lot more work. Intuitively we cannot hope to simply use a stronger dimensionality
reduction, since logn dimensions only just fit n points in Hamming space and would
surely make too many non-similar points collide to be effective.

A natural idea is to construct higher-dimensional filter families by combining
multiple smaller families. This is a common technique from the first list decodable
error correcting codes, for example [Elias, 1957]: Given a code C ⊆ {0,1}d with
covering radius r, we can create a new code C2 ⊆ {0,1}2d of size ∣C∣2 with covering
radius 2r by taking every pair of code words and concatenating them. Then for a
given point x ∈ {0,1}2d we can decode the first and last d coordinates of x = x1x2

separately in C. This returns two code words c1, c2 such that dist(x1, c1) ≤ r and
dist(x2, c2) ≤ r. By construction c1c2 is in C2 and dist(x1x2, c1c2) ≤ 2r.
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This combination idea gives is nice when it applies. When used with high
quality inner codes, the combined code is close to optimal as well. In most cases
the properties of C that we are interested in won’t decompose as nicely. With the
example of our Hamming ball filter family, consider x, y ∈ {0,1}2d with distance
dist(x, y) = r. If we split x = x1x2 an y = y1y2 we could decode the smaller vectors
individually in a smaller family, however we don’t have any guarantee on dist(x1, y1)
and dist(x2, y2) individually, so the inner code might fail to return anything at all.

To solve this problem, we use a classic tool for creating combinatorial objects,
such as our filter families, called ‘splitters’. Originally introduced by [Mairson,
1983, Naor et al., 1995] they are defined as follows:

Definition 3 (Splitter). A (B, l)-splitter H is a family of functions from {1, . . . ,B}
to {1, . . . , l} such that for all S ⊆ {1, . . . ,B}, there is a h ∈H that splits S perfectly,
i.e., into equal-sized parts h−1(j)∩S, j = 1, 2, . . . , l. (or as equal as possible, if l does
not divide ∣S∣).

The size of H is at most Bl, and using either a generalization by [Alon et al.,
2006] or a simple combinatorial argument, it is possible to ensure that the size of
each part ∣h−1(j)∣ equals B/l (or as close as possible).

We now explain how splitters help us combine filter families. Let H be a
splitter from {1, . . . ,2d} to {1,2}. For any x, y ∈ {0,1}2d we can let S be the set
of coordinates on which x and y differ. Then there is a function h ∈ H such that
∣h−1(1) ∩ S∣ = ∣h−1(2) ∩ S∣ = ∣S∣/2. (Or as close as possible if ∣S∣ is odd.) If we repeat
the failed product combination from above for every h ∈H we get a way to scale our
family from d to 2d dimensions, taking the size from ∣F ∣ to (2d)2∣F ∣2. That is, we
only suffer a small polynomial loss. In the end it turns out that the loss suffered
from creating filter families using this divide and conquer approach can be contained,
thus solving our problem.

An issue that comes up, is that the ‘property’ we are splitting (such as distance)
can often be a lot smaller than the dimensionality d of the points. In particular
this original dimensionality reduction may suffer an overhead factor d/∣S∣, which
could make it nearly useless if ∣S∣ is close to 1. To solve this problem, both of
our algorithms employ special half-deterministic dimensionality reductions, which
ensures that the interesting properties get ‘boosted’ and end up taking a reasonable
amount of ‘space’. These reductions are themselves not complicated, but they are
somewhat non-standard, since they can only have a one sided error. For example
for Hamming distance we need that the mapped distance is never larger than its
expected value, since otherwise we could get false negatives.

For Hamming distance our dimension reduction works by hashing the coordinates
randomly from [d] to [m] taking the xor of the coordinates in each bucket. This is
related to the β-test in [Kushilevitz et al., 2000]. The idea is that if x and y are
different in only a few coordinates, then taking a small random group of coordinates,
it is likely to contain at most one where they differ. If no coordinates differ, then
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after taking the xor the result will still be the same, but if exactly one (or an odd
number) of coordinates differ, the resulting coordinate will be different.

For set similarity things are a bit more hairy. There is no data independent
dimensionality reduction that can reduce the size of the domain. In fact this would
break the lower bounds of e.g. [Pagh and Christiani, 2017]. Instead we come up
with a new construction based on perfect hash functions, which greatly increases
the number of filters needed, but only as much as we can afford given the easier
sub-problems.

The idea can be motivated as follows: Suppose you have to make a family of sets
T ⊆ P([n]) of size r, such that for each each set K ⊆ [n] of size ∣K ∣ = k there is an
R ∈ T such that R ⊆K. Then you might try to extend this to the domain [2n] as
follows: For each R ∈ T and each b ∈ {0,1}r, make a new set R′ = {i + nbi ∶ i ∈ R}
(where bi is padded appropriately). This creates 2r ∣T ∣ new sets, which can be shown
to have the property, that for any set K ⊆ [2n] of size ∣K ∣ = k, there is an R′ such
that R′ ⊆K. That is as long as K ∩ (K − n) = ∅, since then we can consider R ∈ T
such that R ⊆ (K mod n). That is R is a subset of K ‘folded‘ into the first [n]
elements, and one of the R′ will be a subset of K.

Because of the requirement that ∣K mod n∣ = k we need to use perfect hashing as
a part of the construction. However for non-Las Vegas algorithms, a similar approach
may be useful, simply using random hashing.

3 Hamming Space Data Structure

We will give an efficient filter family for LSF in Hamming space. Afterwards we
will analyze it and choose the most optimal parameters, including dimensionality
reduction.

Lemma 1. For every choice of parameters B, b ∈ N, b ≤ B, 0 < r < B/2 and

s2 = O(B/
√
b), there exists a code C ⊆ {0,1}B of size ∣C∣ = poly(BB/b) exp( s2

2(1−r/d))
with the following properties:

1. Given x ∈ {0, 1}B we can find a subset C(x) ⊆ {c ∈ C ∶ dist(x, c) ≤ B/2−s
√
B/2}

in time ∣C(x)∣ + poly(BB/b, es
2b/B).

2. For all pairs x, y ∈ {0,1}B with dist(x, y) ≤ r there is some common nearby
code word c ∈ C(x) ∩C(y).

3. The code requires 4b poly(BB/b, es
2b/B) time for preprocessing and poly(BB/b, es

2b/B)
space.

Note that we don’t actually guarantee that our ‘list-decoding’ function C(x)
returns all nearby code words, just that it returns enough for property (2) which is
what we need for the data structure. This is however not intrinsic to the methods
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and using a decoding algorithm similar to [Becker et al., 2016] would make it a ‘true’
list-decoding.

Proof. We first show how to construct a family for {0,1}b, then how to enlarge it
for {0, 1}B. We then show that it has the covering property and finally the decoding
properties. In order for our probabilistic arguments to go through, we need the
following lemma, which follows from Stirling’s Approximation:

Lemma 2. For t = d
2 −

s
√
d

2 , 1 ≤ s ≤ d1/4/2 and r < d/2, Let x, y ∈ {0, 1}d be two points

at distance dist(x, y) = r, and let I = ∣{z ∈ {0, 1}d ∶ dist(z, x) ≤ t,dist(z, y) ≤ t}∣ be the
size of the intersection of two hamming balls around x and y of radius t, then

7

8d
exp ( −s2

2(1−r/d)) ≤ I 2−d ≤ exp ( −s2
2(1−r/d))

Proof is in the appendix.
Let s′ = s

√
b/B. Consider any two points x, y ∈ {0,1}b with distance ≤ (r/d)b.

If we choose a ∈ {0,1}b uniformly at random, by lemma 2 we have probability

p = poly(b) exp( −s′2
2(1−r/d)) that both x and y have distance at most t = b/2 − s′

√
b/4

with c. By the union bound over pairs in {0, 1}b, if we sample p−1b log 2 independent
as, we get constant probability that some a works for every pair. We can verify
that a set A of such filters indeed works for every pair in time 4b∣A∣. By repeatedly
sampling sets A and verifying them, we get a working A in expected O(1) tries.1

Next we define C. We build a splitter, that is a set Π of functions π ∶ [B]→ [B/b],
such that for every set I ⊆ [B] there is a π ∈ Π such that ⌊∣I ∣b/B⌋ ≤ ∣π−1(j) ∩ I ∣ ≤
⌈∣I ∣b/B⌉ for j = 1, . . . ,B/b. By the discussion after definition 3, such a set of size
poly(BB/b) exists and can be constructed in time and space proportional to its
size. Implicitly we can then define C by making one code word c ∈ {0,1}B for every
π ∈ Π and 1 ≤ j1, . . . , jB/b ≤ ∣A∣, satisfying the requirement that cπ−1(jk) = Ajk for
k = 1 . . .B/b. That is, for a given set of rows of A and a split of [B], we combine the
rows into one row c such that each row occupies a separate part of the split. Note
that this is possible, since splitter has all partitions of equal size, b. The created
family then has size ∣C∣ = ∣Π∣∣A∣B/b = poly(BB/b) exp( −s2

2(1−r/d)) as promised. Since the

only explicit work we had to do was finding A, we have property (3) of the lemma.
We define the decoding function C(x) ∈ C for x ∈ {0,1}B with the following

algorithm: For each π ∈ Π compute the inner decodings Aj = {a ∈ A ∶ dist(xπ−1(j), a) ≤
b/2 − s

√
b/2} for j = 1, . . . ,B/b. Return the set of all concatenations in the product

of the Aj ’s: C(x) = {a1∥a2∥ . . . ∥aB/b ∶ a1 ∈ A1, . . .}. Computing the Aj ’s take time
(B/b)∣A∣, while computing and concatenating the product takes linear time in the
size of the output. This shows property (1).

1The randomness is not essential, and we could as well formulate a set cover instance and solve
it using the greedy algorithm, which matches the probabilistic construction up to a log factor in size
and time.
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Finally for property (2), consider a pair x, y ∈ {0,1}B of distance ≤ r. Let
I be the set of coordinates on which x and y differ. Then there is a function
π ∈ Π such that x and y differ in at most ∣I ∣b/B = rb/B coordinates in each subset
π−1(1), . . . , π−1(B/b) ⊆ [B]. Now for each pair of projected vectors xπ−1(1), yπ−1(1), . . .

(let’s call them x1, y1, . . . ) there is an aj ∈ A such that dist(aj , xj) ≤ b/2− s′
√
b/2 and

dist(aj , yj) ≤ b/2−s′
√
b/2. This means that x and y must both have distance at most

(b/2 − s′/2)B/b = B/2 − s
√
B/2 to that c ∈ C which has cπ−1(j) = aj for j = 1 . . .B/b.

By the same reasoning, this c will be present in both C(x) and C(y), which proves
the lemma.

Returning to the problem of near neighbour search in {0, 1}d, it is clear from the
4b poly(BB/b) construction time of the above family, that it will not be efficient for
dimension B = (logn)ω(1). For this reason we will apply the following dimensionality
reduction lemma:

Lemma 3. Given d ≥ cr > r ≥ 1 and ε, δ > 0, define B = 27ε−3 log 1/δ and m = 3cr/ε
and assume δ−1 ≥ m, then there is a random set F of at most S = m/B functions
f ∶ {0,1}d → {0,1}B with the following properties for every x, y ∈ {0,1}d:

1. With probability 1, there is at least one f ∈ F st.:

dist(f(x), f(y)) ≤ dist(x, y)/S.

2. If dist(x, y) ≥ cr then for every f ∈ F with probability at least 1 − δ:

dist(f(x), f(y)) ≥ (1 − ε)cr/S.

The idea is to randomly throw the d coordinates in m = 3cr/ε buckets, (xor-ing the
value if more than two coordinates land in the same group.) For two points with ≤ cr
differences, this has the effect of rarely colliding two coordinates at which the points
disagree, thus preserving distances. It further has the effect of changing the relative
distances from arbitarily low r/d to something around ε, which allows partitioning
the coordinates into groups of around ε−3 log 1/δ coordinates using Chernoff bounds.

Proof. To prove lemma 3 first notice that if B ≥ d we can use the identity function
and we are done. If B ≥m, then we can duplicate the vector ⌈m/B⌉ = O(ε−2 log 1/δ)
times. Also, by adjusting ε by a constant factor, we can assume that B divides m.

For the construction, pick a random function h ∶ [d]→ [m]. Define g ∶ {0,1}d →
{0,1}m by ‘xor’ing the contents of each bucket, g(x)i =⊕j∈h−1(i) xj , and let fi(x) =
g(x)(iB,(i+1)B] for i = 0 . . .m/B be the set of functions in the lemma. We first show
that this set has property (1) and then property (2).

Observe that g never increases distances, since for any x, y ∈ {0,1}d the distance

dist(g(x), g(y)) =
m

∑
i=1

⎡⎢⎢⎢⎢⎣
⊕

j∈h−1(i)
xj ≠ ⊕

j∈h−1(i)
yj

⎤⎥⎥⎥⎥⎦
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is just ∑mi=1 (∑j∈h−1(i)[xj ≠ yj] mod 2) which is upper bounded by the number of
coordinates at which x and y differ. By averaging, there must be one fi such that
dist(fi(x), fi(x)) ≤ dist(g(x), g(y))B/m ≤ dist(x, y)/S.

For the second property, let R = dist(x, y) ≥ cr and let X1, . . . ,Xm be the random
number of differences between x and y in each bucket under h. Let Y1, . . . , Ym be
iid. Poisson distributed variables with mean λ = EX1 = R/m ≥ ε/3. We use the the
Poisson trick from [Mitzenmacher and Upfal, 2005] theorem 5.7:

Pr[
B

∑
i=1

(Xi mod 2) < x] ≤ e
√
mPr[

B

∑
i=1

(Yi mod 2) < x].

The probability Pr[Y mod 2 ≡ 1] that a Poisson random variable is odd is (G(1) −
G(−1))/2 where G(z) = ∑iPr[Y = i]zi = eλ(z−1). This gives us the bound Pr[Yi mod
2 ≡ 1] = (1−e−2λ)/2 ≥ (1−e−2ε/3)/2 ≥ (1−ε/3)ε/3. We can then bound the probability
of an fi decreasing distances too much, using a Chernoff bound (Pr[Z ≤ x] ≤
exp(−D[x/B ∣ p]B)):

Pr[dist(fi(x), fi(y)) ≤ (1 − ε)cr/S]
≤ e

√
m exp(−D[(1 − ε)ε/3 ∣ (1 − ε/3)ε/3]B)

≤ e
√
m exp(−2ε3B/27).

Since cr/S = crB/m = Bε/3. Here D[α ∣ β] = α log α
β + (1−α) log 1−α

1−β ≥ (α−β)2/(2β)
is the Kullback–Leibler divergence. For our choice of B the error probability is then
e
√
mδ2 which is less than δ by our assumptions. This proves the lemma.

Using lemma 3 we can make at most 3cr/ε = O(d/ε) data structures, as described
below, and be guaranteed that in one of them, we will find a near neighbour at
distance r′ = r/S = ε/(3c)B. In each data structure we will have to reduce the
distance cr′, at which we expect far points to appear, to cr′(1 − ε). This ensures we
see at most a constant number of false positives in each data structure, which we
can easily filter out. For ε = o(1) this change be swallowed by the approximation
factor c, and won’t significantly impair our performance.

When using the filter family of lemma 1 for LSF, the time usage for queries and
inserting points is dominated by two parts: 1) The complexity of evaluating C(x),
and 2) The expected number of points at distance larger than cr′(1 − ε) that falls in
the same filter as x.

By randomly permuting and flipping the coordinates, we can assume that x is a
random point in {0,1}d. The expected time to decode C(x) is then

E ∣C(x)∣ + poly(BB/b, es
2b/B)

= ∣C∣Pr
x
[0 ∈ C(x)] + poly(BB/b, es

2b/B)

≤ poly(BB/b, es
2b/B) exp ( s2

2(1−r′/B) −
s2

2 ) .
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For estimating collisions with far points, we can similarly assume that x and y
are random points in {0,1}d with fixed distance cr′(1 − ε):

E ∣{y ∈ P ∶ C(x) ∩C(y) ≠ ∅}∣
≤ n ∣C∣ Pr

x,y
[0 ∈ C(x),0 ∈ C(y)]

≤ BO(B/b) exp ( s2

2(1−r′/B) −
s2

2(1−c(1−ε)r′/B) + logn)

= BO(B/b) exp ( s22 ( 1
1−r′/B − 1

1−cr′/B +O(ε)) + logn) .

Finally we should recall that constructing the data structures takes time 4b poly(es2b/B)
plus n inserts.

We now choose the parameters:

s2/2 = 1−cr′/B
cr′/B logn, B = 27ε−3 logn,

b = log4 n, ε = (logn)−1/4.

This makes the code construction time n1+o(1) while evaluating C(x) and looking at

far points takes expected time at most n1/c+Õ(logn)−1/4 . To use lemma 1 we have to

check that s2 = O(B/
√
b) = O((logn)5/4), but s2/2 = 1−ε/3

ε/3 logn = (logn)5/4(1−o(1))
so everything works out. This shows theorem 1.

To get the result of corollary 1, we just need to substitute the dimensionality
reduction lemma 3 for a simple partitioning approach. (Lemma 4 below.) The idea
is that of [Pagh, 2016] which is to randomly partition the d coordinates in B parts
and run the algorithm on those. The important point is that in this case r′/B = r/d,
so the relative distance is not decreased. We choose parameters

s2/2 = 1−cr/d
cr/d logn B = O(ε−2(cr/d)−1 logn),

b = log4 n, ε = (logn)−1/3.

This again makes this makes the code construction time n1+o(1) while evaluating

C(x) and looking at far points takes time n
1−cδ
c(1−δ)+Õ(logn)−1/3d/r

as in the corollary.
Again we need need to check that s2 = O(B/

√
b) = O((logn)7/6). This works as long

as r/d = Ω((logn)−1/6), which is the assumption of the corollary.

Lemma 4. For any d ≥ r ≥ 1 and ε > 0 there is a set F of d/B functions, f ∶
{0,1}d → {0,1}B, where B = 2ε−2d/(cr) logn, such that:

1. With probability 1, there is at least one f ∈ F st.:

dist(f(x), f(y)) ≤ dist(x, y)B/d.

2. If dist(x, y) ≥ cr then for every f ∈ F with probability at least 1 − 1/n:

dist(f(x), f(y)) ≥ (1 − ε)crB/d.
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Proof. Fix a random permutation. Given x ∈ {0, 1}d, shuffle the coordinates using the
permutation. Let f1(x) be the first B coordinates of x, f2(x) the next B coordinates
and so forth. For any y ∈ {0, 1}d, after shuffling, the expected number of differences in
some block of B coordinates is dist(x, y)B/d. Then the first property follows because

∑i dist(fi(x), fi(y)) = dist(x, y) so not all distances can be below the expectation.
The second property follows from the Chernoff/Hoeffding bound [Hoeffding, 1963].

4 Set Similarity Data Structure

We explore the generality of our methods, by making a Las Vegas version of another
very common LSH data structure. Recall the theorem we are trying to prove, from
the introduction:

Theorem. Given a set P of n subsets of [d], define the Braun-Blanquet similarity
sim(x, y) = ∣x∩y∣/max(∣x∣, ∣y∣) on the elements of P . For every choice of 0 < b2 < b1 < 1
there is a data structure on P that supports the following query operation:

On input q ⊆ [d], for which there exists a set x ∈ P with sim(x, q) ≥ b1, return
an x′ ∈ P with sim(x′, q) > b2. The data structure uses expected time dnρ per query,
can be constructed in expected time dn1+ρ, and takes expected space n1+ρ + dn where

ρ = log 1/b1
log 1/b2 + Ô(1/

√
logn).

By known reductions [Pagh and Christiani, 2017] we can focus on the case where
all sets have the same weight, w, which is known to the algorithm. This works by
grouping sets in data structures with sets of similar weight and uses no randomization.
The price is only a (logn)O(1) factor in time and space, which is dominated by the

nÔ(1/
√

logn) factor in the theorem.
When two sets have equal weight w, being b-close in Braun-Blanquet similarity

coresponds exactly to having an intersection of size bw. Hence for the data structure,
when trying to solve the (b1, b2)-approximate similarity search problem, we may
assume that the intersections between the query and the ‘close’ sets we are interested
in are at least b1w, while the intersections between the query and the ‘far’ sets we
are not interested in are at most b2w.

The structure of the algorithm follows the LSF framework as in the previous
section. A good filter family for set similarity turns out to be the r-element blocks of
a Turán system. This choice is inspired by [Pagh and Christiani, 2017] who sampled
subsets with replacement.

Definition 4 ([Turán, 1961, Colbourn and Dinitz, 2006]). A Turán (n, k, r)-system
is a collection of r-element subsets, called ‘blocks’, of an n element set X such that
every k element subset of X contains at least one of the blocks.

Turán systems are well studied on their own, however all known general con-
structions are either only existential or of suboptimal size. The following lemma
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provides the first construction to tick both boxes, and with the added benefit of
being efficiently decodable.

An interesting difference between this section and the last, is that we don’t know
how to do a dimensionality reduction like we did for hamming distance. Instead we
are (luckily) able to make an efficiently decodable filter family even for very large
dimensional data points.

Lemma 5. For every n, k, r, where n > k > r3/2, there exists a Turán (n, k, r)-system,
T , of size ∣T ∣ ≤ (n/k)r eχ where χ = O(√r log r + log k + log logn) with the following
properties:

1. Correctness: For every set K ⊆ [n] of size at least k, there is at least one block
R ∈ T such that R ⊆K.

2. Efficient decoding: Given a set S ⊆ [n], we can find all the blocks it contains
T (S) = {R ∈ T ∶ R ⊆ S} in time ∣S∣∣T (S)∣+eχ. Furthermore, T (S) has expected
size ≤ (∣S∣/k)reχ.

3. Efficient construction: The system is constructible, implicitly, in er(1+o(1)) time
and space.

Notes: A simple volume lower bound shows that an (n, k, r)-system must have
at least (n

r
)/(kr) ≥ (n/k)r blocks, making our construction optimal up the factor eχ.

Using the sharper bound (n
r
)/(kr) ≈ (n/k)r exp( r22k) from lemma 6, we get that the

factor exp(Ω(√r)) is indeed tight for k = O(r3/2).
The size of the system is in ‘expectation’, which is sufficient for our purposes,

but is in fact fairly easy to fix. On the other hand, the ‘expectation’ in the size of
sets T (S) seems harder to get rid of, which is the reason why the data strcuture is
Las Vegas and not deterministic.

4.1 The algorithm

We continue to describe the algorithm and proving theorem 2 using the lemma. The
proof of the lemma is at the end and will be the main difficulty of the section.

As discussed, by the reduction of [Pagh and Christiani, 2017] we can assume that
all sets have weight w, intersections with close sets have size ≥ b1w and intersections
with far sets have size ≤ b2w. The data structure follows the LSF scheme as in the
previous section. For filters we use a Turán (d, b1w, logn

log 1/b2 ) design, constructed by

lemma 5. Note that if b1w < ( logn
log 1/b2 )

3/2 (k < r3/2 in the terms of the lemma), we can

simply concatenate the vectors with themselves O(logn) times. If b1w ≤ logn
log 1/b2 we

can simply use all the ( d
b1w

) sets of size b1w as a Turán (d, b1w, b1w) system and get
a fast deterministic data structure.

As in the previous section, given a dataset P of n subsets of [d], we build the
data structure by decoding each set in our filter system T . We store pointers from
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each set R ∈ T to the elements of P in which they are a contained. By the lemma,

this takes time n(w(w/k)r + 1)eχ = wn(1/b1)
logn

log 1/b2 eχ ≤ dnρ, while expected space
usage is n(w/k)reχ + er(1+o(1)) + dn = nρ + dn as in the theorem. Building T takes
time er(1+o(1)) = n(1+o(1))/ log 1/b2 = n1+o(1).

Queries are likewise done by decoding the query set x in T and inspecting
each point y ∈ P for which there exists R ∈ T with R ⊆ y, until a point y′ with
sim(x, y′) > b2 is found. Let’s call this the candidate set of x. The expected number
of false positive points in the candidates is thus

∑
y∈P

E[∣{R ∈ T ∶ R ⊆ x ∩ y}∣] = ∑
y∈P

E[∣T (x ∩ y)∣] ≤ n(b2w/(b1w))
logn

log 1/b2 eχ = nρ.

Computing the actual similarity takes time w, so this step takes time at most
wnρ ≤ dnρ . We also have to pay for actually decoding T (x), but that takes time

w(w/(b1w))
logn

log 1/b2 eχ + eχ ≤ dnρ as well.
Finally, to see that the algorithm is correct, if sim(x, y) ≥ b1 we have ∣x∩y∣ ≥ b1w,

and so by the Turán property of T there is R ∈ T such that R ⊆ x ∩ y which implies
R ⊆ x and R ⊆ y. This shows that there will always be at least one true high-similarity
set in the candidates, which proves theorem 2.

4.2 The proof of lemma 5

Proof. We first prove the lemma in four parts, starting with a small design and
making it larger step by step. To more easily describe the small designs, define
a = kr−3/2 log(r3/2) and b = √

r. The steps are then

1. Making a (k2/(a2b), k/(ab), r/b) using brute force methods.

2. Use splitters to scale it to ((k/a)2, k/a, r).

3. Use perfect hashing to make it an (n/a, k/a, r) design.

4. Use partitioning to finally make an (n, k, r) design.

We first prove the lemma without worrying about the above values being intergers.
Then we’ll show that each value is close enough to some integer that we can hide
any excess due to approximation in the loss term.

The four steps can also be seen as proofs of the four inequalities:

T (n, k, r) ≤ (n
r
)/(kr) (1 + log (n

k
)),

T (cn, ck, cr) ≤ (cn
c
)T (n, k, r)c,

T (ck2, k, r) ≤ (k4 log ck2)cr T (k2, k, r),
T (cn, ck, r) ≤ cT (n, k, r).

where the c are arbitrary integer constants > 0.
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1. For convenience, define n′ = k2/(a2b), k′ = k/(ab), r′ = r/b and assume they are
all intergers. Probabilistically we can build a Turán (n′, k′, r′)-system, T (n′), by
sampling

` = (n′
r′)/(

k′
r′)(1 + log (n′

k′)) ≤ (n′/k′)r′er′2/k′(1 + k′ log(en′/k′)) = (n′/k′)r′r5/2(1 + o(1))

independent size r′-sets. (Here we used the bound on (n′
r′)/(

k′
r′) from lemma 6 in the

appendix.) For any size k′ subset, K, the probability that it contains none of the

r′-sets is (1 − (k′
r′)/(

n′
r′))

`
≤ e−1/(n

′
k′). Hence by the union bound over all (n′

k′) K-sets,

there is constant probability that they all contain an r′-set, making our T (n′) a valid
system.

We can verify the correctness of a sampled system, naiively, by trying iterating
over all (n′

k′) K-sets, and for each one check if any of the R-sets is contained. This
takes time bounded by

(n′
k′)` ≤ (en′/k′)k′(n′/k′)r′r5/2(1 + o(1))

= ( er3/2
log(r3/2))

r

log(r3/2) ( r2

log(r3/2))
√
r
rO(1)

= er+O(r/ log r)

as in the preprocessing time promised by the lemma. Since we had constant success
probability, we can repeat the above steps an expected constant number of times to
get a correct system.

Notice that the system has a simple decoding algorithm of brute-force iterating
through all ` sets in T (n′).

2. To scale up the system, we proceed as in the previous section, by taking a
splitter, Π, that is a set of functions π ∶ [bn′] → [b] such that for any set I ⊆ [bn′]
there is a π ∈ Π such that

⌊∣I ∣/b⌋ ≤ ∣π−1(j) ∩ I ∣ ≤ ⌈∣I ∣/b⌉ for j = 1, . . . , b.

In other words, each π partitions [bn′] in b sets [bn′] = π−1(1) ∪ . . . π−1(b) and for
any subset I ⊆ [bn′] there is a partition which splits it as close to evenly as possible.
We discuss the constructions of such sets of functions in the appendix.

For each π ∈ Π, and distinct i1, . . . , ib ∈ [∣T (n′)∣], we make a br′-set, R ⊆ [bn′],
which we think of as an indicator vector ∈ {0,1}bn′ , such that Rπ−1(j) = T

(n′)
ij

for

j = 1 . . . b. That is, the new block, restricted to π−1(1), π−1(2), . . . , will be equal to
the i1th, i2th, . . . blocks of T (n′). Another way to think of this is that we take the
i1th, i2th, . . . blocks of T (n′) considered as binary vectors in {0,1}n′ and combine
them to a bn′ block ‘spreading’ them using π.
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The new blocks taken together forms a family T (bn′) of size

∣T (bn′)∣ = ∣Π∣∣T (n′)∣b = (bn′
b
)[(n′/k′)r′rO(1)]b ≤ (en′)b(n′/k′)br′rO(b) = (n′/k′)br′rO(b),

where we used only the trivial bound (n
k
) ≤ (en/k)k and the fact that n′ = rO(1).

We now show correctness of T (bn′). For this, consider any bk′-set K ⊆ [bn′]. We
need to show that there is some br′-set R ∈ T (bn′) such that R ⊆K. By construction
of Π, there is some π ∈ Π such that ∣π−1(j) ∩K ∣ = k′ for all j = 1, . . . , b. Considering
K as an indicator vector, we look up Kπ−1(1), . . . ,Kπ−1(b) in T (n′), which gives us

b disjoint r′-sets, R′
1, . . . ,R

′
b. By construction of T (bn′) there is a single R ∈ T (bn′)

such that Rπ−1(j) = R′
j for all j. Now, since R′

j ⊆Kπ−1(j) for all j, we get R ⊆K and

so we have proven T (bn′) to be a correct (bn′, bk′, br′)-system.
Decoding T is fast, since we only have to do ∣Π∣ ⋅ b lookups in (enumerations

of) T (n′). When evaluating T (bn′)(K) we make sure we return every br′-set in K.
Hence we return the entire “product” of unions:

T (bn′)(K) = ⋃
π∈Π

{R1 ∪ ⋅ ⋅ ⋅ ∪Rb ∶ R1 ∈ T (n′)(Kπ−1(1)),R2 ∈ . . .}.

In total this takes time ∣T (bn′)(K)∣ for the union product plus an overhead of
∣Π∣b∣T (n′)∣ ≤ (en′)brO(r′+b) = rO(

√
r) for the individual decodings.

3. Next we convert our ((k/a)2, k/a, r) design, T (bn′) (note that bn′ = (k/a)2), to
a (n/a, k/a, r) design, call it T (n/a).

Let H be a perfect hash family of functions h ∶ [n/a] → [(k/a)2], such that for
every k/a-set, S ⊆ [n/a], there is an h ∈H such that ∣h(S)∣ = k/a. That is, no element
of S gets mapped to the same value. By lemma 3 in [Alon et al., 2006], we can
efficiently construct such a family of (k/a)4 log(n/a) functions.

We will first describe the decoding function T (n/a) ∶ P([n/a])→ ([n/a]
k/a ), and then

let T (n/a) = T (n/a)([n/a]). For any set S ⊆ [n/a] to be decoded, for each h ∈H, we
evaluate T (bn′)(h(S)) to get all r-sets R ∈ T (bn′) where R ⊆ h(S). For each such set,
we return each set in

(h−1(R1) ∩ S) × (h−1(R2) ∩ S) × ⋅ ⋅ ⋅ × (h−1(Rr) ∩ S),

where Ri is the ith element of R when considered as a [bn′]r vector.
This takes time equal to the size of the above product (the number of results,

∣T (S)∣) plus an overhead of ∣H∣ times the time to decode in T (bn′) which is ∣H∣rO(
√
r) =

eχ by the previous part. The other part of the decoding time, the actual size
∣T bn′(h(S))∣, is dominated by the size of the product. To prove the the ‘efficient
decoding’ part of the lemma we thus have to show that the expected size of T (S) is
≤ (∣S∣a/k)reχ for any S ⊆ [n/a]. (Note: this is for a set S ⊆ [n/a], part four of the
proof will extend to sets S ⊆ [n] and that factor a in the bound will disappear.)
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At this point we will add a random permutation, π ∶ [(k/a)2]→ [(k/a)2], to the
preprocessing part of the lemma. This bit of randomness will allow us to consider
the perfect hash-family as ‘black box’ without worrying that it might conspire in
a worst case way with our fixed family T (bn′). We apply this permutation to each
function of H, so we are actually returning

T (n/a)(S) =⋃{(h−1(π−1R1) ∩ S) × (h−1(π−1R2) ∩ S) × ⋅ ⋅ ⋅ × (h−1(π−1Rr) ∩ S)
∶ for all R ∈ T (bn′)(πh(S)) and h ∈H.}

We can then show for any S ⊆ [n/a]:

Eπ[∣T (n/a)(S)∣] = Eπ
⎡⎢⎢⎢⎢⎣

∑
h∈H,R∈T (bn′)(πh(S))

∣(h−1(π−1R1) ∩ S) × ⋅ ⋅ ⋅ × (h−1(π−1Rr) ∩ S)∣
⎤⎥⎥⎥⎥⎦

= ∑
h∈H,R∈T (bn′)

Eπ [∣(h−1(π−1R1) ∩ S)∣⋯ ∣(h−1(π−1Rr) ∩ S)∣ ⋅ [R ⊆ πh(S)]]

= ∣T (bn′)∣ ∑
h∈H

Eπ [∣(h−1(π−1R1) ∩ S)∣⋯ ∣(h−1(π−1Rr) ∩ S)∣] (1)

≤ ∣T (bn′)∣ ∑
h∈H

Eπ [∣h−1(π1) ∩ S∣]
r

(2)

= ∣T (bn′)∣ ∣H∣ (∣S∣/(k/a)2)r

= (∣S∣a/k)reχ.

For (1) we used that

[R ⊆ h(S)] = [∀r∈Rr ∈ h(S)] = [∀r∈Rh−1(r) ∩ S ≠ ∅] (3)

and so the value in the expectation was already 0 exactly when the Iversonian bracket
was zero.

For (2) we used the Maclaurin’s Inequality [Ben-Ari and Conrad, 2014] which
says that E(X1X2 . . .Xr) ≤ (EX1)r when the Xis are values sampled identically,
uniformely at random without replacement from som set of non-negative values.
In our case those values were sizes of partitions h−1(1) ∩ S, . . . , h−1(bn′) ∩ S, which
allowed us to bound the expectation as if h had been a random function.

We need to show that T (n/a) is a correct decoding function, that is T (n/a)(S) =
{R ∈ T (n/a) ∶ R ⊆ S}, and the correctness of T (n/a), that is ∣S∣ ≥ k/a implies
T (n/a)(S) ≠ ∅.

For this, first notice that T is monotone, that is if S ⊆ U then T (S) ⊆ T (U).
This follows because R ⊆ πh(S) Ô⇒ R ⊆ πh(U) and that each term h−1(Ri) ∩ S
is monotone in the size of S. This means we just need to show that T (K) returns
something for every ∣K ∣ = k, since then T = T ([n/a]) = T (⋃KK) ⊇ ⋃T (K) will
return all these things.

Hence, consider a k-set, K ⊆ [n/a]. By the property of H, there must be some
h ∈ πH such that ∣h(K)∣ = k, and by correctness of T (bn′) we know there is some r-set,
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R ∈ T (bn′)(h(K)). Now, for these h and R, since R ⊆ h(K) and using (3) we have
that (h−1(R1)∩K)× . . . is non-empty, which is what we wanted. Conversely, consider
some R ∈ T (n/a) = T (n/a)([n/a]) such that R ⊆ K, then R ∈ h−1(R′

1) × h−1(R′
2) . . .

for some R′ ∈ T (bn′) and h(R) ⊆ h(K). However h(R) is exactly R′, since Ri ∈
h−1(R′

i) Ô⇒ h(Ri) = R′
i, which shows that T (n/a)(K) returns all the set we want.

4. Finally we convert our (n/a, k/a, r) design, T (n/a) to an (n, k, r) design, call it
T . We do this by choosing a random permutation π ∶ [n] → [n] and given any set
S ⊆ [n] we decode it as

T (S) = T (n/a)(πS ∩ {1, . . . , n/a}) ∪ ⋅ ⋅ ⋅ ∪ T (n/a)(πS ∩ {n − n/a + 1, . . . , n}).

To see that this is indded an (n, k, r) design, consider any set K ⊆ [n] of
size ∣K ∣ = k, there must be one partition K ∩ {1 . . . , n/a}, . . . that has at least
the average size k/a. Since T (n/a) is a (n/a, k/a, r) design, it will contain a set
R ⊆K ∩ {in − n/a + 1, . . . , in} ⊆K which we return.

It remains to analyze the size of T (S), which may of course get large if we are so
unlucky that π places much more than the expected number of elements in one of
the partitions. In expectation this turns out to not be a problem, as we can see as
follows:

Eπ ∣T (S)∣ =∑
i

Eπ [∣T (n/a)(πS ∩ pi)∣]

= a∑
s

E [∣T (n/a)(πS ∩ p1)∣ ∣ ∣πS ∩ p1∣ = s] Pr[∣πS ∩ p1∣ = s]

= a∑
s

(sa/k)reχ (∣S∣
s
)(n − ∣S∣
n/a − s)/( n

n/a)

≤ eχ∑
s

(s
r
)

(k/a
r
)

(∣S∣
s
)(n−∣S∣
n/a−s)

( n
n/a)

= eχ
(∣S∣
r
)

(k/a
r
)( n
n/a)

∑
s

(∣S∣ − r
s − r )(n − ∣S∣

n/a − s)

= eχ
(∣S∣
r
)( n−r
n/a−r)

(k/a
r
)( n
n/a)

= eχ
(∣S∣
r
)(n/a

r
)

(k/a
r
)(n
r
)

≤ eχ(∣S∣a/k)rer2/(k/a)a−r = (∣S∣/k)reχ.

Here we used Vandermonde convolution to complete the sum over s, and then
eventually lemma 6 to bound the binomial ratios. This completes the proof of
lemma 5.
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4.3 Integrality considerations

In the proof, we needed the following quantities to be integral: b = r/b = √
r,

a = kr−3/2 log(r3/2), k2/(a2b) = k/a = r3/2/ log(r3/2), k/(ab) = r/ log(r3/2), n/a.
It suffices to have

√
r and r/ log(r3/2) integral, and that the later divides k.

It is obviously ridiculous to require that r is a square number. Or is it? You can
actually make a number square by just changing it by a factor 1+ 2/√r. That would
only end up giving us an eO(

√
r), so maybe not so bad?

To make r/ log(r3/2) integral, we can multiply with a constant. Since it didn’t
matter that we divided by a log, surely it doesn’t matter that we multiply with a
constant.

To make r/ log(r3/2) divide k, we need k to have some divisors. We can’t just
round k to say, a power of two, since that could potentially change it by a constant
factor, which would come out of (n/k)r. We can change k with at most 1+ 1/√r. So
1 + 1/

√
k would be just fine. Of course we can change it by an additive r/ log(r3/2).

That corresponds to a factor about 1 + r/k. Since k > r3/2 that is fine! Or maybe
we’ll subtract that, because then it is still a valid (n, k, r) design. In the same way,
if we round r up to the nearest square root, we don’t have to make the changes in
the later calculations, but they can be kept intirely inside the lemma.

5 Conclusion and Open Problems

We have seen that, perhaps surprisingly, there exists a relatively general way of
creating efficient Las Vegas versions of state-of-the art high-dimensional search data
structures.

As bi-products we found efficient, explicit constructions of large Turán systems
and covering codes for pairs. We also showed an efficient way to do dimensionality
reduction in hamming space without false negatives.

The work leaves a number of open questions for further research:

1) Can we make a completely deterministic high-dimensional data structure for
the proposed problems? Cutting the number of random bits used for Las Vegas
guarantees would likewise be interesting. The presented algorithms both use
O(d log d) bits, but perhaps limited independence could be used to show that
O(log d) suffice?

2) Does there exist Las Vegas data structures with performance matching that
of data-dependent LSH data structures? This might connect to the previous
question, since a completely deterministic data structure would likely have to be
data-dependent. However the most direct approach would be to repeat [Andoni
et al., 2017b], but find Las Vegas constructions for the remaining uses of Monte
Carlo randomness, such as clustering.
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3) By reductions, our results extend to `2 and `1 with exponent n1/c. This is optimal

for `1, but for `2 we would hope to get n1/c2 . Can our techniques be applied
to yield such a data structure? Are there other interesting LSH algorithms
that can be made Las Vegas using our techniques? The author conjectures that
a space/time trade-off version of the presented algorithm should follow easily
following the approach of [Andoni et al., 2017b, Laarhoven, 2015, Christiani,
2017].

4) In the most general version, we we get the overhead term (logn)−1/4 in our ρ
value. Some previous known LSH data structures also had large terms, such
as [Andoni and Indyk, 2006], which had a (logn)−1/3 term and [Andoni et al.,
2017b], which has (log logn)−Θ(1), but in general most algorithms have at most a
(logn)−1/2 term.

Can we improve the overhead of the approach given in this paper? Alternatively,
is there a completely different approach, that has a smaller overhead?
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6 Appendix

6.1 Explicit reduction from `1 to Hamming

Theorem 3. For d, r, c ≥ 1 and a set of points P ⊆ Rd of size ∣P ∣ = n, there is
a function f ∶ Rd → {0,1}b where b = 2d2ε−3 logn, such that for any two points
x ∈ Rd, y ∈ P ,

1. if ∥x − y∥1 ≤ r then ∥f(x) − f(y)∥1 ≤ (1 + ε)S,

2. if ∥x − y∥1 ≥ cr then ∥f(x) − f(y)∥1 ≥ (1 − ε)cS,

and the scale factor S = b/(2dcr) = (d logn)/(crε3).

Proof. First notice that we can assume all coordinates are at most rn. This can
be assured by imposing a grid of side length 2rn over the points of P , such that
no point is closer than distance r from a cell boundary. Since points x, y ∈ Rd in
different cells must now be more than distance r from each other, we can set the
embedded distance to cS by prefixing points from different cells with a different code
word. The grid can be easily found in time O(dn) by sweeping over each dimension
seperately.

Notice that for actual data structure purposes, we can even just process each cell
seperately and don’t have to worry about separating them.

By splitting up each coordinate into positive and negative parts, we can further
assume each coordinate of each vector is positive. This costs a factor of 2 in d.

Next, if we have an 2εr/d grid, then there is always a grid point within `1-distance
εr. That means if we multiply each coordinate by d/(2εr) and round the coordinates
to nearest integer, we get distances are changed by at most εr.

We are now ready for the main trick of the reduction. Let M be the largest
coordinate, which we can assume is at most dn/ε, and R = dc/(2ε) be the value
of cr after scaling and rounding. For each coordinate we map [M] → [⌊M/R⌋]R
by h(c) ∶= ⟨⌊ xR⌋, ⌊x+1

R ⌋, . . . , ⌊x+R−1
R ⌋⟩. The point of this mapping is that for every

c1, c2 ∈ [M], dist(h(c1), h(c2)) = min(∣c1 − c2∣,R), where dist is hamming distance.
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100 12 12 12 12 13 13 13 13

105 13 13 13 13 13 13 13 14

∗ ∗ ∗ ∗ ∗

Figure 1: Mapping 100 and 105 to [⌊100/8⌋]8 preserving `1 distance in Hamming
distance.

All that’s left is to use a code with good minimum and maximum distance to
map down into {0,1}. A random code with bit length k = 4ε−2(log 4n) suffices. To
see this, let X be a binomial random variable, X ∼ B(k,1/2). Then

Pr[(1 − ε)k/2 ≤ C ≤ (1 + ε)k/2] ≤ 2e−ε
2k/2 ≤ 1/(8n2)

so by union bound over all (M/R
2

) ≤ 2n2 pairs of values, we have constant probability
that the code works. For a given code, we can check this property deterministically
in time kn2, so we can use rejection sampling and generate the code in time ≈ O(n2).
Of course, n2 time may be too much. Luckily there are also explicit codes with the
property, such as those by Naor and Naor [Naor and Naor, 1993].

The complete construction follows by concatenating the result of h on all coordi-
nates.

See [Indyk, 2007] for an explicit reduction from `2 to `1.

6.2 The Ratio of Two Binomial Coefficients

Classical bounds for the binomial coefficient: (n/k)k ≤ (n
k
) ≤ (en/k)k give us simple

bounds for binomial ratios, when n ≥m: (n/em)k ≤ (n
k
)/(m

k
) ≤ (en/m)k. The factor

e on both sides can often be a nuisance.
Luckily tighter analysis show, that they can nearly always be either removed

or reduced. Using the fact that n−i
m−i is increasing in i for n ≥ m, we can show

(n
k
)/(m

k
) =∏k−1

i=0
n−i
m−i ≥∏

k−1
i=0

n
m = ( n

m
)k. This is often sharp enough, but on the upper

bound side, we need to work harder to get results.
Let H(x) = x log 1/x + (1 − x) log 1/(1 − x) be the binary entropy function,

Lemma 6. For n ≥m ≥ k ≥ 0 we have the following bounds:

( n
m

)
k

≤ ( n
m

)
k

exp(n −m
nm

k(k − 1)
2

) ≤ (n
k
)/(m

k
) ≤ exp (nH(k/n))

exp (mH(k/m)) ≤ ( n
m

)
k

ek
2/m
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If m ≥ n we can simply flip the inequalities and swap n for m. Note that
(n/em)k ≤ (n/m)k and ek

2/m ≤ ek, so the bounds strictly tighten the simple bounds
states above.

Especially the entropy bound is quite sharp, since we can also show: (n
k
)/(m

k
) ≥

exp((n+1)H(k/(n+1)))
exp((m+1)H(k/(m+1))) , though for very small values of k, the lower bound in the
theorem is actually even better. We can also get a feeling for the sharpness of
the bounds, by considering the series expansion of the entropy bound at k/m→ 0:
exp(nH(k/n))

exp(mH(k/m)) = ( n
m
)k exp(n−mnm

k2

2 +O(k3/m2)).
For the proofs, we’ll use some inequalities on the logarithmic function from [Topsøe,

2006]:

log(1 + x) ≥ x/(1 + x) (4)

log(1 + x) ≥ 2x/(2 + x) for x ≥ 0 (5)

log(1 + x) ≤ x(2 + x)/(2 + 2x) for x ≥ 0. (6)

In particular (5) and (6) imply the following bounds for the entropy function:

H(x) ≤ x log 1/x + x(2 − x)/2 (7)

H(x) ≥ x log 1/x + 2x(1 − x)/(2 − x), (8)

which are quite good for small x.
We’ll prove theorem 6 one inequality at a time, starting from the left most:

Proof. The first inequality follows simply from n−m
nm

k(k−1)
2 ≥ 0, which is clear from

the conditions on n ≥m ≥ k.
The second inequality we prove by using (4), which implies 1+x ≥ exp(x/(1+x)),

to turn the product into a sum:

(n
k
)/(m

k
) =

k−1

∏
i=0

n − i
m − i

= ( n
m

)
k k−1

∏
i=0

1 − i/n
1 − i/m

= ( n
m

)
k k−1

∏
i=0

(1 + i/m − i/n
1 − i/m )

≥ ( n
m

)
k

exp(
k−1

∑
i=0

i(n −m)
(n − i)m)

≥ ( n
m

)
k

exp(
k−1

∑
i=0

i
n −m
nm

)

= ( n
m

)
k

exp(k(k − 1)
2

n −m
nm

) .
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For the entropy upper bound we will use an integration bound, integrating
log(n − i)/(m − i) by parts:

(n
k
)/(m

k
) =

k−1

∏
i=0

n − i
m − i

= exp(
k−1

∑
i=0

log
n − i
m − i)

≤ exp(∫
k

0
1 log

n − x
m − xdx)

= exp
⎛
⎝
x log

n − x
m − x ∣

k

0

− ∫
k

0
x( 1

m − x −
1

n − x)dx
⎞
⎠

= exp(k log
n − k
m − k + ∫

k

0
( m

m − x −
n

n − x)dx)

= exp
⎛
⎝
k log

n − k
m − k − ∣m log

1

m − x − n log
1

n − x ∣
k

0

⎞
⎠

= exp (nH(k/n) −mH(k/m)) .

The integral bound holds because log n−i
m−i is increasing in i, and so log n−i

m−i ≤
∫ i+1
i log n−x

m−xdx. We see that n−i
m−i is increasing by observing n−i

m−i =
n
m + in/m−i

m−i where
the numerator and denominator of the last fraction are both positive. The entropy
lower bound, mentioned in the discussion after the theorem, follows similarly from
integration, using log n−i

m−i ≥ ∫
i
i−1 log n−x

m−xdx.
For the final upper bound, we use the bounds (7) and (8) on H(k/n) and H(k/m)

respectively:

exp (nH(k/n))
exp (mH(k/m)) ≤ ( n

m
)
k

exp(k
2

2
( 1

m − k/2 −
1

n
)) ≤ ( n

m
)
k

exp(k
2

m
) .

6.3 Proof of lemma 2

Recall the lemma:

Lemma 2. For t = d
2 −

s
√
d

2 , 1 ≤ s ≤ d1/4/2 and r < d/2, Let x, y ∈ {0, 1}d be two points

at distance dist(x, y) = r, and let I = ∣{z ∈ {0, 1}d ∶ dist(z, x) ≤ t,dist(z, y) ≤ t}∣ be the
size of the intersection of two hamming balls around x and y of radius t, then

7

8d
exp ( −s2

2(1−r/d)) ≤ I 2−d ≤ exp ( −s2
2(1−r/d))
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Figure 2: To calculate how many points are within distance t from two points x
and y, we consider without loss of generality x = 0 . . .0. For a point, z, lying in the
desired region, we let i specify the number of 1’s where x and y differ, and j the
number of 1’s where they are equal. With this notation we get d(x, z) = i + j and
d(y, z) = j + r − i.

Proof. From figure 2 we have that I = ∑ i+j≤t
j−i≤t−r

(r
i
)(d−r

j
), and from monotonicity (and

figure 3) it is clear that ( r
r/2)(

d−r
t−r/2) ≤ I ≤ ∑ 0≤i≤r

0≤j≤t−r/2
(r
i
)(d−r

j
).

We expand the binomials using Stirling’s approximation:
exp(nH(k/n))√

8(1−k/n)k
≤ (n

k
) ≤

∑i≤k (ni) ≤ exp(nH(k/n)) where H(x) = x log 1
x + (1−x) log 1

1−x is the binary entropy

function, which we bound as log 2 − 2(1
2 − x)

2 − 4(1
2 − x)

4 ≤H(x) ≤ log 2 − 2(1
2 − x)

2.
We then have for the upper bound:

I2−d ≤ 2r−d exp [(d − r)H ( t−r/2d−r )] ≤ exp [− s2

2(1−r/d)]

And for the lower bound:

I2−d ≥ 2−d( r

r/2)(
d − r
t − r/2) ≥

2r−d√
2r

exp [(d − r)H ( t−r/2d−r − log 2)]
√

8(1 − t−r/2
d−r )(t − r/2)

≥ exp[− s2

2(1−r/d)]
exp[− s4

4(1−r/d)3d]√
4r(d − r)(1 − ds2

(d−r)2 )

≥ exp[− s2

2(1−r/d)]
1

d

1 − 2s4/d√
1 − 4s2/d

,

where for the last inequality we used the bound ex ≥ 1 + x. The last factor is

monotone in s and we see that for s ≤ d1/4/2 it is ≥ 7
8
(1 − 1/

√
d)−1/2 ≥ 7

8 , which gives
the theorem.

The factor of 1/d can be sharpened a bit, e.g. by using the two dimensional
Berry-Essen theorem from [Bentkus, 2005].
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Figure 3: A contour plot over the two dimensional binomial. The pentagon on the
left marks the region over which we want to sum. For the upper bound we sum i
from 0 to r and j from 0 to t − r/2.
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