
On the Complexity of Inner Product Similarity Join∗

Thomas D. Ahle*, Rasmus Pagh*, Ilya Razenshteyn**, and Francesco Silvestri*

*IT University of Copenhagen, {thdy,pagh,fras}@itu.dk

**MIT CSAIL, ilyaraz@mit.edu

ABSTRACT
A number of tasks in classification, information retrieval,
recommendation systems, and record linkage reduce to the
core problem of inner product similarity join (IPS join): iden-
tifying pairs of vectors in a collection that have a sufficiently
large inner product. IPS join is well understood when vectors
are normalized and some approximation of inner products is
allowed. However, the general case where vectors may have
any length appears much more challenging. Recently, new
upper bounds based on asymmetric locality-sensitive hashing
(ALSH) and asymmetric embeddings have emerged, but little
has been known on the lower bound side. In this paper we
initiate a systematic study of inner product similarity join,
showing new lower and upper bounds. Our main results are:

• Approximation hardness of IPS join in subquadratic
time, assuming the strong exponential time hypothesis.

• New upper and lower bounds for (A)LSH-based algo-
rithms. In particular, we show that asymmetry can be
avoided by relaxing the LSH definition to only consider
the collision probability of distinct elements.

• A new indexing method for IPS based on linear sketches,
implying that our hardness results are not far from
being tight.

Our technical contributions include new asymmetric embed-
dings that may be of independent interest. At the conceptual
level we strive to provide greater clarity, for example by dis-
tinguishing among signed and unsigned variants of IPS join
and shedding new light on the effect of asymmetry.

∗The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement no. 614331.

1. INTRODUCTION
This paper is concerned with inner product similarity join
(IPS join) where, given two sets P,Q ⊆ Rd, the task is to find
for each point q ∈ Q at least one pair1 (p, q) ∈ P ×Q where
the inner product (or its absolute value) is larger than a given
threshold s. Our results apply also to the problem where
for each q ∈ Q we seek the vector p ∈ P that maximizes
the inner product, a search problem known in literature as
maximum inner product search (MIPS) [44, 46].

Motivation. Similarity joins have been widely studied in
the database and information retrieval communities as a
mechanism for linking noisy or incomplete data. Consid-
erable progress, in theory and practice, has been made to
address metric spaces where the triangle inequality can be
used to prune the search space (see e.g. [7, 62]). In partic-
ular, it is now known that in many cases it is possible to
improve upon the quadratic time complexity of a naive algo-
rithm that explicitly considers all pairs of tuples. The most
prominent technique used to achieve provably subquadratic
running time is locality-sensitive hashing (LSH) [26, 25]. In
the database community the similarity join problem was
originally motivated by applications in data cleaning [18, 11].
However, since then it has become clear that similarity join
is relevant for a range of other data processing applications
such as clustering, semi-supervised learning, query refine-
ment, and collaborative filtering (see e.g. [45] for references
and further examples). We refer to the recent book by Aug-
sten and Böhlen [12] for more background on similarity join
algorithms in database systems.

Inner product is an important measure of similarity between
real vectors, particularly in information retrieval and machine
learning contexts [32, 49], but not captured by techniques for
metric similarity joins such as [27, 62]. Teflioudi et al. [51]
studied the IPS join problem motivated by applications in
recommender systems based on latent-factor models. In this
setting, a user and the available items are represented as
vectors and the preference of a user for an item is given
by the inner product of the two associated vectors. Other
examples of applications for IPS join are object detection [24]
and multi-class prediction [23, 29]. IPS join also captures

1Since our focus is on lower bounds, we do not consider the
more general problem of finding all such pairs. Also note
that from an upper bound side, it is common to limit the
number of occurrences of each tuple in a join result to a
given number k.

the so-called maximum kernel search, a general machine
learning approach with applications such as image matching
and finding similar protein/DNA sequences [21].

Challenges of IPS join. Large inner products do not cor-
respond to close vectors in any metric on the vector space,
so metric space techniques cannot directly be used. In fact,
there are reasons to believe that inner product similarity may
be inherently more difficult that other kinds of similarity
search: Williams [57, 5] has shown that a truly subquadratic
exact algorithm for IPS join would contradict the Strong
Exponential Time Hypothesis, an important conjecture in
computational complexity. On the upper bound side new
reductions of (special cases of) approximate IPS join to fast
matrix multiplication have appeared [52, 30], resulting in
truly subquadratic algorithms even with approximation fac-
tors asymptotically close to 1. However, the approach of
reducing to fast matrix multiplication does not seem to lead
to practical algorithms, since fast matrix multiplication algo-
rithms are currently not competitive on realistic input sizes.
From a theoretical viewpoint it is of interest to determine
how far this kind of technique might take us by extending
lower bounds for exact IPS join to the approximate case.

Another approach to IPS join would be to use LSH, which
has shown its utility in practice. The difficulty is that inner
products do not admit locality-sensitive hashing as defined
by Indyk and Motwani [46, Theorem 1]. Recently there
has been progress on asymmetric LSH methods for inner
products, resulting in subquadratic IPS join algorithms in
many settings. The idea is to consider collisions between two
different hash functions, using one hash function for query
vectors and another hash function for data vectors [46, 47, 40].
However, existing ALSH methods give very weak guarantees
in situations where inner products are small relative to the
lengths of vectors. It is therefore highly relevant to determine
the possibilities and limitations of this approach.

1.1 Problem definitions
We are interested in two variants of IPS join that slightly
differ in the formulation of the objective function. For nota-
tional simplicity, we omit the term IPS and we simply refer
to IPS join as join. Let s > 0 be a given value. The first
variant is the signed join, where the goal is to find at least
one pair (p, q) ∈ P ×Q for each point q ∈ Q with pT q ≥ s.
The second variant is the unsigned join which finds, for each
point q ∈ Q, at least one pair (p, q) ∈ P ×Q where |pT q| ≥ s.
We observe that the unsigned version can be solved with
the signed one by computing the join between P and Q and
between P and −Q, and then returning only pairs where
the absolute inner products are larger than s. Signed join
is of interest when searching for similar or preferred items
with a positive correlation, like in recommender systems. On
the other hand, unsigned join can be used when studying
relations among phenomena where even a large negative cor-
relation is of interest. We note that previous works do not
make the distinction between the signed and unsigned ver-
sions since they focus on settings where there are no negative
dot products.

Our focus is on approximate algorithms for signed and un-
signed joins. Indeed, approximate algorithms allow us to

overcome, at least in some cases, the curse of dimensionality
without significantly affecting the final results. Approximate
signed joins are defined as follows.

Definition 1. Given two point sets P , Q and a value
0 < c < 1, the signed (cs, s) join returns, for each q ∈ Q, at
least one pair (p, q) ∈ P × Q with pT q ≥ cs if there exists
p′ ∈ P such that p′T q ≥ s. No guarantee is provided for
q ∈ Q where there is no p′ ∈ P with p′T q ≥ s.

The unsigned (cs, s) join is defined analogously, taking the ab-
solute value of dot products. Indexing versions of signed/unsigned
exact/approximate joins can be defined in a similar way. For
example, the signed (cs, s) search is defined as follows: given
a set P ⊂ Rd of n vectors, construct a data structure that
efficiently returns a vector p ∈ P such that pT q > cs for any
given query vector q ∈ Rd, under the promise that there is
a point p′ ∈ P such that pT q ≥ s (a similar definition holds
for the unsigned case).

As already mentioned, LSH is often used for solving similar-
ity joins. In this paper, we use the following definition of
asymmetric LSH based on the definition in [46].

Definition 2. Let Up denote the data domain and Uq the
query domain. Consider a family H of pairs of hash functions
h = (hp(·), hq(·)). Then H is said (s, cs, P1, P2)-asymmetric
LSH for a similarity function sim if for any p ∈ Up and
q ∈ Uq we have:

1. if sim(p, q) ≥ s then PrH[hp(p) = hq(q)] ≥ P1;

2. if sim(p, q) < cs then PrH[hp(p) = hq(q)] ≤ P2.

When hp(·) = hq(·), we get the traditional (symmetric) LSH
definition.The ρ value of an (asymmetric) LSH is defined as
usual with ρ = logP1/ logP2 [7]. Two vectors p ∈ Up and
q ∈ Uq are said to collide under a hash function from H if
hp(p) = hq(q).

1.2 Overview of results

Hardness results. The first results of the paper are condi-
tional lower bounds for approximate signed and unsigned
IPS join that rely on a hypothesis about the Orthogonal Vec-
tors Problem (OVP). This problem consists in determining
if two sets A,B ⊆ {0, 1}d, each one with n vectors, contain
x ∈ A and y ∈ B such that xT y = 0. It is known [57] that

OVP cannot be solved in O
(
n2−εdO(1)

)
time, for any given

constant ε > 0, if the Strong Exponential Time Hypothesis
(SETH) is true.

Many recent interesting hardness results rely on reductions
from OVP, however we believe ours is the first example of
using the conjecture to show the conditional hardness for an
approximate problem. In particular we show the following
result:

Theorem 1. Let α > 0 be given and consider sets of
vectors P,Q with |Q| = n, |P | = nα. Suppose there exists a
constant ε > 0 and an algorithm with running time at most
dO(1)n1+α−ε, when d and n are sufficiently large, for at least
one of the following IPS join problems:

1. Signed (cs, s) join of P,Q ⊆ {−1, 1}d with c > 0.
2. Unsigned (cs, s) join of P,Q ⊆ {−1, 1}d with c =

e−o(
√

logn/ log logn).
3. Unsigned (cs, s) join of P,Q ⊆ {0, 1}d with c = 1−o(1).

Then the OVP conjecture is false.

Discussion. It is interesting to compare our conditional
lower bound to the recent upper bounds by Karppa et al. [30],
who get sub-quadratic running time for unsigned join of
normalized vectors in {−1, 1}d, when log(s)/ log(cs) is a
constant smaller than 12. It’s not too hard to derive from
OVP that we cannot expect sub-quadratic running time
when log(s)/ log(cs) = 1 − o(1/ logn), however point 2. of
Theorem 1 shows that even the case where log(s)/ log(cs) =
1− o(1/

√
logn) is hard.

Theorem 1 also implies that (assuming the OVP conjecture)
there does not exist a data structure for unsigned (cs, s)

MIPS with (nd)O(1) construction time and n1−εdO(1) query
time, for constant ε > 0. This follows by considering a join
instance with α small enough that we can build the data
structure on P in time o(nd). We can then query over all the

points of Q in time n1+α(1−ε)dO(1), contradicting the OVP
conjecture. Our result can be seen as an explanation of why
all LSH schemes for MIPS have failed to provide sub-linear
query times for small s. Under the OVP conjecture this is
inevitable, at least if we support vectors with negative values.
It is possible to show hardness for even super polynomial
dependency on d, if we only want to show hardness for say
c = 1/polylogn.

The {−1, 1}d case seems to be harder than the {0, 1}d case.
In fact Valiant [52] reduces the case of P,Q ⊆ Rd to the case
P,Q ⊆ {−1, 1}d using the LSH by Charikar [16]. Another
piece of evidence is that the state-of-the-art LSH approaches
give better results for {0, 1}d than {−1, 1}d as we show in
section 4.2. The {0, 1}d case is on the other hand particularly
interesting, as it is occurs often in practice, for example when
the vectors represent sets. A better understanding of the
upper bounds for this case, would be very interesting.

Techniques. From a technical point of view, the proof uses
a number of different algebraic techniques to expand the
gap between orthogonal and non-orthogonal vectors from
the OVP problem. For the {−1, 1} we use an enhanced,
deterministic version of the “Chebyshev embedding” [52],
while for the interesting {0, 1} part, we initiate a study of
embeddings for restricted alphabets.

Inner product LSH lower bounds. In the second part of
the paper we focus on LSH functions for signed and unsigned
IPS. We investigate the gap between the collision probability

2More precisely they need log(s)/ log(cs) < 2/ω, where ω is
the matrix multiplication constant.

P1 of vectors with inner product (or absolute inner product)
larger than s and the collision probability P2 of vectors with
inner product (or absolute inner product) smaller than cs.
As a special case, we get the impossibility result in [40, 46],
that there cannot exist an asymmetric LSH for unbounded
query vectors. Specifically we get the following theorem:

Theorem 2. Consider an (s, cs, P1, P2)-asymmetric LSH
for signed IPS when data and query domains are d-dimensional
balls with unit radius and radius U respectively. Then, the
following upper bounds on P1 − P2 apply:

1. if d ≥ 1 and s ≤ O (1/d), we obtain P1 − P2 =

O
(

1/log(d log1/c(U/s))
)

for signed and unsigned IPS;

2. if 2 ≤ d ≤ Θ
(
U5/(c2s5)

)
and s ≤ O (1/d), we obtain

P1 − P2 = O (1/log(dU/(s(1− c)))) for signed IPS;

3. if d > Θ
(
U5/(c2s5)

)
, we obtain P1 − P2 = O

(√
s/U

)
for signed and unsigned IPS.

It follows that, for any given dimension d, there cannot exist
an asymmetric LSH when the query domain is unbounded.

Discussion. The upper bounds for P1 − P2 translate into
lower bounds for the ρ factor, as soon as P2 is fixed. To the
best of our knowledge, this is the first lower bound on ρ that
holds for asymmetric LSH. Indeed, previous results [38, 41]
have investigated lower bounds for symmetric LSH and it is
not clear if they can be extended to the asymmetric case.

Techniques. The starting point of our proof is the same
as in [40]: Use a collision matrix given by two sequences
of data and query vectors that force the gap to be small.
The proof in [40] then applies an asymptotic analysis of the
margin complexity of this matrix [50], and it shows that
for any given value of P1 − P2 there are sufficiently large
data and query domains for which the gap must be smaller.
Unfortunately, due to their analysis, an upper bound on the
gap for a given radius U of the query domain is not possible,
and so the result does not rule out very large gaps for small
domains. Our method also highlights a dependency of the
gap on the dimension, which is missing in [40]. In addition,
our proof holds for d = 1 and only uses purely combinatorial
arguments.

IPS upper bounds. In the third part we provide some in-
sights on the upper bound side. We first show that it is
possible to improve the asymmetric LSH in [40, 47] by just
plugging the best known data structure for Approximate
Near Neighbor for `2 on a sphere [10] into the reduction
in [40, 13]. Then we show how to circumvent the impos-
sibility results in [40, 46] by showing that there exists a
symmetric LSH when the data and query space coincide by
allowing the bounds on collision probability to not hold when
the the data and query vectors are identical. We conclude by
describing a data structure based on the linear sketches for `p
in [6] for unsigned (cs, s) search: for any given 0 < κ ≤ 1/2,
the data structure yields a c = 1/nκ approximation with

Õ
(
dn2−2/κ

)
construction time and Õ

(
dn1−2/κ

)
query time.

Theorem 1 suggests that we cannot substantially improve
the approximation with similar performance.

1.3 Previous work

Similarity join. Similarity join problems have been exten-
sively studied in the database literature (e.g. [18, 19, 20,
27, 28, 35, 37, 48, 53, 54, 59]), as well as in information
retrieval (e.g. [15, 22, 60]), and knowledge discovery (e.g. [4,
14, 55, 61, 63]). Most of the literature considers algorithms
for particular metrics (where the task is to join tuples that
are near according to the metric), or particular application
areas (e.g. near-duplicate detection). A distinction is made
between methods that approximate distances in the sense
that we only care about distances up to some factor c > 1,
and methods that consider exact distances. Known exact
methods do not guarantee subquadratic running time. It
was recently shown how approximate LSH-based similarity
join can be made I/O-efficient [42].

IPS join. The inner product similarity for the case of nor-
malized vectors is known as “cosine similarity” and it is well
understood [17, 34, 44]. While the general case where vectors
may have any length appears theoretically challenging, prac-
tically efficient indexes for unsigned search were proposed
in [44, 31], based on tree data structures combined with a
branch-and-bound space partitioning technique similar to k-d
trees, and in [13] based on principal component axes trees.
For document term vectors Low and Zheng [36] showed that
unsigned search can be sped up using matrix compression
ideas. However, as many similarity search problems, the
exact version considered in these papers suffers from the
curse of dimensionality [56].

The efficiency of approximate IPS approaches based on LSH
is studied in [46, 40]. These papers show that a traditional
LSH does exist when the data domain is the unit ball and
the query domain is the unit sphere, while it does not exist
when both domains are the unit ball (the claim automatically
applies to any radius by suitably normalizing vectors). On
the other hand an asymmetric LSH exists in this case, but
it cannot be extended to the unbounded domain Rd. An
asymmetric LSH for binary inner product is proposed in [47].
The unsigned version is equivalent to the signed one when
the vectors are non-negative.

Algebraic techniques. Finally, recent breakthroughs have
been made on the (unsigned) join problem in the approximate
case as well as the exact. Valiant [52] showed how to reduce
the problem to matrix multiplication, when cs ≈ O(

√
n)

and s ≈ O(n), significantly improving on the asymptotic
time complexity of approaches based on LSH. Recently this
technique was improved by Karppa et al. [30], who also gen-
eralized the sub-quadratic running time to the case when
log(s)/ log(cs) is small. In another surprising development
Alman and Williams [5] showed that for d = O (logn) dimen-
sions, truly subquadratic algorithms for the exact IPS join
problem on binary vectors is possible. Their algorithm is
based on an algebraic technique (probabilistic polynomials)

and tools from circuit complexity.

2. HARDNESS OF IPS JOIN
We first provide an overview of OVP and of the associated
conjecture in next Section 2.1. Then, in Section 2.2, we prove
Theorem 1 by describing some reductions from the OVP to
signed/unsigned joins.

2.1 Preliminaries
The Orthogonal Vectors Problem (OVP) is defined as follows:

Definition 3 (OVP). Given two sets P and Q, each
one containing n vectors in {0, 1}d, detect if there exist vec-
tors p ∈ P and q ∈ Q such that pT q = 0.

OVP derives its hardness from the Strong Exponential Time
Hypothesis, and the connection was proved by Williams [57].
We remark that the conjectures are assumed to hold even
against randomized algorithms [1]. We will therefore assume
the following plausible conjecture:

Conjecture 1 ([57]). For all ε > 0 and (randomized)
algorithms for the OVP problem, there exists γ > 0 such that
the running time of the algorithm, with |P | = |Q| = n and
γ logn dimensions, is not in O(n2−ε).

We note that the conjecture does not hold for d = O (logn):
It has recently been proved in [2] that there exists an algo-
rithm for OVP running in O

(
n2−ε), for some ε > 0, when

d = O (logn).

Hence, in order to disprove OVP, an algorithm must be
strongly subquadratic when d = γ logn for all γ. It is
instructive to state the negation of the conjecture, which
is: “There exists ε > 0 and an algorithm such that for all
constant γ the algorithm runs in time O(n2−ε) on instances
of dimension γ logn.”

The OVP conjecture, as usually stated, concerns the case
where the two sets have equal size. However in order to
get hardness for the case where |P | 6= |Q| we consider the
following generalization of OVP which has the same hardness
as the usual OVP for all parameter values.

Lemma 1 (Generalized OVP). Suppose that there ex-
ist constants ε > 0 and α > 0 and a (randomized) algorithm
such that for every constant γ the algorithm solves OVP for
P,Q ⊆ {0, 1}γ logn where |P | = nα and |Q| = n in time
O(n1+α−ε). Then OVP is false.

Proof. Without loss of generality assume α ≤ 1 (other-
wise is enough to invert the role of P and Q). Suppose we
have an algorithm running in time n1+α−ε for some ε > 0.
Take a normal OVP instance with |P | = |Q| = n. Split
P into chunks Pi of size nα and run the OVP algorithm
on all pairs (Pi, Q). By our assumption this takes time
n1−αn1+α−ε = n2−ε, contradicting OVP.

2.2 Reductions from OVP
In this section we prove Theorem 1, about hardness of ap-
proximate joins. We will do this by showing the existence of
certain efficient embeddings of the OVP problem. We need
the following definition:

Definition 4. An unsigned (d1, d2, cs, s)-gap embedding
into the domain A is a pair of functions (f, g) : {0, 1}d1 →
Ad
′
2 , where d′2 ≤ d2, A ⊆ R, and for any x, y ∈ {0, 1}d1 :

|f(x)T g(y)| ≤ cs when (x, y) ≥ 1

|f(x)T g(y)| ≥ s when (x, y) = 0

A signed embedding is analogous, but without the absolute
value symbols. We further require that the functions f and g
can be evaluated in time polynomial to d2.

Gap embeddings connect to the join problem, by the following
technical lemma:

Lemma 2. Suppose we have the following:

• For given constants α ≥ 0, a ≥ 0 and ε > 0, there exists
an algorithm for (un)signed (cs, s) join for |Q| = n and
|P | = nα over A, running in time O(dan1+α−ε).
• For some constants δ ≥ 0 and b ≥ 0 and for all γ > 0,

there exists an (un)signed (γ log n, nδ, cs, s)-gap embed-
ding into A running in time nδb .

If bδ < α and aδ < ε, then the OVP conjecture is false.

Proof. Given an OVP instance with |Q| = n, |P | = nα

and dimension γ logn, take a (un)signed (γ logn, nδ, cs, s)-
gap embedding (f, g) and apply it to the instance, such that
the maximum inner product between f(P), g(Q) is at least
s if the OVP instance has an orthogonal pair and ≤ cs
otherwise. Now run the algorithm for (un)signed (cs, s) join
on (f(P), g(Q)), which produces the orthogonal pair, if it
exists.

As f(P),g(Q) ⊆ An
δ

, the above procedure runs in time

O
(
n1+bδ + n1+α−ε+δa

)
.

The first term is the time to perform the embedding of all
vectors in P and Q, while the second term is for computing
the join on the embedded vectors. Since we assume bδ < α
and aδ < ε, we get that OVP can be solved

O
(
n1+α−ε1 + n1+α−ε2

)
= O

(
n1+α−min(ε1,ε2)

)
where ε1 = α − bδ and ε2 = ε − aδ, which contradicts the
OVP conjecture.

The last ingredient we need to show Theorem 1 is a suitable
family of embeddings to use with Lemma 2:

Lemma 3. We can construct the following gap embed-
dings:

1. A signed (d, 4d− 4, 0, 4)-embedding into {−1, 1}.

2. An unsigned (d, (9d)q, (2d)q, (2d)qeq/
√
d/2)-embedding

into {−1, 1}, for any q ∈ N+, d > 1.

3. An unsigned (d, k2d/k, k − 1, k)-embedding into {0, 1},
for any k.

Proof. We will use the following notation in our con-
structions: Let x� y be the concatenation of vectors x and
y;3 Let xn mean x concatenated with itself n times;4 And let
x� y mean the vectorial representation of the outer product
xyT . Tensoring is interesting because of the following folk-
lore property: (x1 � x2)T (y1 � y2) = trace (x1x

T
2)T (y1y

T
2) =

trace x2(xT1 y1)yT2 = (xT1 y1)(xT2 y2).

(Embedding 1) The signed embedding is a simple coordinate
wise construction:

f̂(0) := (1,−1,−1) ĝ(0) := (1, 1,−1)

f̂(1) := (1, 1, 1) ĝ(1) := (−1,−1,−1)

such that f̂(1)T ĝ(1) = −3 and f̂(0)T ĝ(1) = f̂(1)T ĝ(0) =

f̂(0)T ĝ(0) = 1. This, on its own, gives a (d, 3d, d − 4, d)
embedding, as non orthogonal points need to have at least
one (1,1) at some position.

We can then translate all the inner products by −(d− 4):

f(x) := f̂(x1) � · · ·� f̂(xn) � 1d−4

g(x) := ĝ(x1) � · · ·� ĝ(xn) � (−1)d−4

which gives the (d, 4d− 4, 0, 4) embedding we wanted. Note
that the magnitudes of non orthogonal vectors may be large
(−4d+ 4), but we do not care about those for signed embed-
dings.

(Embedding 2) We recall the recursive definition of the q-th
order Chebyshev polynomial of first kind (see, e.g., [3] page
782):

T0(x) = 1

T1(x) = x

Tq+1(x) = 2xTq(x)− Tq−1(x)

The polynomials have the following properties [52]:

|Tq(x)| ≤ 1 when |x| ≤ 1

|Tq(1 + ε)| ≥ eq/
√
ε when 1 > ε > 0

We use the same coordinate wise transformation as in the
signed embedding, but instead of translating by a negative
value, we translate by adding d + 2 ones, giving a (d, 4d +
2, 2d−2, 2d+2) unsigned embedding. Let the vectors created
this way be called x and y.

3� for concatenation and � for tensoring stresses their dual
relationship with + and × on the inner products in the
embedded space. We note however that in general, it is only
safe to commute �’es and �’es in an embedding (f, g), when
both f and g are commuted equally.
4If we wanted to further stress the duality between construc-
tion and embedding, we could define ~n to be the all 1 vector
of length n. Then ~n�x would stand for repeating x n times.

On top of that, we would like to construct an embedding for
the polynomial Tq(u/2d), where Tq is the qth order Cheby-
shev polynomial of the first kind. However since this will not
in general be interger, there is no hope for constructing it
using {−1, 1}.

Luckily it turns out we can construct an embedding for
bqTq(u/b) for any integers b and q. Let (fq, gq) be the qth
embedding of this type, defined by:

f1(x), g1(y) := 1, 1

f2(x), g2(y) := x, y

fn+2(x) := (x� fn+1(x))2 � fn(x)(2d)2

gn+2(y) := (y � gn+1(y))2 � (−gn(y))(2d)2

We make the following observations:

• If x and y are {−1, 1} vectors, then so are fq(x) and
gq(y).

• The inner product of the embedded vectors, fq(x)T gq(x)
is a function of the original inner product:

f1(x)T g1(y) = 1

f2(x)T g2(y) = xT y

fq+2(x)T gq+2(y) = 2xT y fq+1(x)T gq+1(y)

− (2d)2fq(x)T gq(y)

Indeed it may be verified from the recursive definition
of Tq that fq(x)T gq(y) = (2d)nTq(x

T y/2d) as wanted.

• Let dq be the dimension of fq(x) and gq(y). Then we
have:

d1 = 1

d2 = 4d− 4

dn = 2(4d− 4)dn−1 + (2d)2dn−2

It can be verified that dq ≤ (9d)q for any q ≥ 0 and
d ≥ 8. Interestingly the (2d)2 concatenations don’t
increase dq significantly, while d2+ε for any ε > 0 would
have killed the simple exponential dependency.

• Finally, with dynamic programming, we can compute
the embeddings in linear time in the output dimension.
This follows from induction over q.

Putting the above observations together, we have for any
integer q ≥ 0 a (d, (9d)q, (2d)q, (2d)qTq(1 + 1/d)) embedding.
By the aforementioned properties of the Chebyshev polyno-
mials, we have the desired embedding. We note that the
Chebyshev embedding proposed by Valiant [52] can provide
similar results; however, our construction is deterministic,
while Valiant’s is randomized.

(Embedding 3) The third embedding maps into {0, 1}. The
difficulty here is that without −1, we cannot express subtrac-
tion as in the previous argument. It turns out however, that
we can construct the following polynomial:

(1− x1y1)(1− x2y2) · · · (1− xdyd)

since {0, 1} is closed under tensoring and

1− xiyi = (1− xi, 1)T (yi, 1− yi)

where 1−xi, yi and 1−yi are both in {0, 1}. The polynomial
has the property of being 1 exactly when the two vectors are
orthogonal and 0 otherwise.

However we cannot use it directly with Lemma 2, as it blows
up the dimension too much, d2 = 2d1 . Instead we “chop up”
the polynomial in k chunks and take their sum:

k−1∑
i=0

d/k∏
j=1

(1− xik/d+jyik/d+j)

This uses just d2 = k2d/k dimensions, which is more manage-
ble. If k does not divide d, we can let the last “chop” of the
polynomial be shorter than d/k, which only has the effect of
making the output dimension slightly smaller.

Finally we get the gap s = k and cs = k−1. The later follows
because for non orthogonal vectors, at least one chunk has
a (1 − xiyi) terms which evaluates to zero. We thus have

a (d, k2d/k, k − 1, k)-embedding into {0, 1}. The explicit
construction is thus:

f(x) :=

k−1

�
i=0

d/k

�
j=1

(1− xik/d+j , 1)

g(x) :=

k−1

�
i=0

d/k

�
j=1

(yik/d+j , 1− yik/d+j)

And the running time is linear in the output dimension.

Finally we parametize and prove Theorem 1. To get the
strongest possible results, we want to get c as small as pos-
sible, while keeping the dimension bounded by nδ for some
δ > 0.

Proof. (Theorem 1)

1. Letting d = γ logn in embedding 1 gives us a signed
(γ logn, no(1), 0, 1)-embedding into {−1, 1}.

2. Letting q = δ logn
log 9d

in embedding 2 gives us an unsigned

(γ log n, nδ, cs, s)-embedding into {−1, 1} for any δ, γ >
0 with

cs = n
δ(1− log 9−log 2

log 9γ+log logn
)

= nδ−O(1/ log logn)

c = e
− δ

√
logn√

γ log logn
(1− log 9γ

log logn
)
/2 = e

−O(
√

logn√
γ log logn

)

3. Letting k = γ/δ+ o(1) we can get an unsigned (γ log n,
nδ, cs, s)-embedding into {0, 1} for any δ, γ > 0 with

cs = γ/δ − 1 + o(1)

c =
cs

s
=
γ/δ − 1 + o(1)

γ/δ + o(1)
= 1−O(1/γ)

For the second embedding, we also calculate the log(s)/ log(cs)
constant, as described in the introduction. To do so, we must

normalize the vectors onto the unit sphere, that is, we calcu-
late:

log(s/d2)

log(cs/d2)
=
q log(2/9) + q/

√
d− log 2

q log(2/9)

= 1− 1

log(9/2)
√
d

+
log 2

q log(9/2)

= 1−O(1/
√
γ logn)

Very crucially, since we want the results to hold for all γ > 0,
we think of it as ω(1), which then translates the O(1/γ)s
into o(1) in the theorem.

3. LIMITATIONS OF LSH FOR IPS
We provide an upper bound on the gap between P1 and P2

for an (s, cs, P1, P2)-asymmetric LSH for signed/unsigned
IPS. For the sake of simplicity we assume the data and query
domains to be the d-dimensional balls of radius 1 and U ≥ 1,
respectively. The bound holds for a fixed set of data points,
so it applies also to data dependent LSH [10]. A consequence
of our result is that there cannot exist an asymmetric LSH
for any dimension d ≥ 1 when the set of query points is
unbounded, getting a result similar to that of [40], which
however requires even the data space to be unbounded and
d ≥ 2.

We firsts show in Lemma 4 that the gap P1 − P2 can be
expressed as a function of the length h of two sequences
of query and data points with suitable collision properties.
Then we provide the proof of the aforementioned Theorem 2,
where we derive some of such sequences and then apply the
lemma.

Lemma 4. Suppose that there exists a sequence of data
vectors P = {p0, . . . , pn−1} and a sequence of query vectors
Q = {q0, . . . , qn−1} such that qTi pj ≥ s if j ≥ i and qTi pj ≤
cs otherwise (resp., |qTi pj | ≥ s if j ≥ i and |qTi pj | ≤ cs
otherwise) . Then any (s, cs, P1, P2)-asymmetric LSH for
signed IPS (resp., unsigned IPS) must satisfy P1 − P2 ≤
1/(8 logn).

Proof. For the sake of simplicity we assume that n =
2` − 1 for some ` ≥ 1; the assumption can be removed by
introducing floor and ceiling operations in the proof. Let
H denote an (s, cs, P1, P2)-asymmetric LSH family of hash
functions, and let h be a function in H. The following
argument works for signed and unsigned IPS.

Consider the n× n grid representing the collisions between
Q×P , that is, a node (i, j) denotes the query-data vectors qi
and pj . We say that a node (i, j), with 0 ≤ i, j < n, collides
under h if vectors qi and pj collide under h. By definition
of asymmetric LSH, all nodes with j ≥ i must collide with
probability at least P1, while the remaining nodes collide
with probability at most P2. We use lower triangle to refer
to the part of the grid with j ≥ i and P1-nodes to refer to the
nodes within it; we refer to the remaining nodes as P2-nodes.

We partition the lower triangle into squares of exponentially
increasing side as shown in Figure 1. Specifically, we split
the lower triangle into squares Gr,s for every r and s with

0 ≤ r < log(n+ 1) = ` and 0 ≤ s < (n+ 1)/2r+1 = 2`−r−1,

where Gr,s includes all nodes in the square of side 2r and
top-left node ((2s + 1)2r − 1, (2s + 1)2r − 1). For a given
square Gr,s, we define the left squares (resp., top squares) to
be the set of squares that are on the left (resp., top) of Gr,s.
We note that the left squares (resp., top squares) contain
2r−i−1 squares of side 2i for any 0 ≤ i < r and all P1-nodes
with

s2r+1 ≤ i, j < (2s+ 1)2r − 1

(resp., (2s+ 1)2r − 1 < i, j ≤ (s+ 1)2r+1 − 2) .

We define the mass mi,j of a node (i, j) to be the collision
probability, under H, of qi and pj . We split the mass of a
P1-node into three contributions called shared mass, partially
shared mass, and proper mass, all defined below. Consider
each P1-node (i, j) and each function h ∈ H where (i, j)
collides. Let Gr,s be the square containing (i, j) and let Kh,i,j

denote the set of P1-nodes (i′, j′) on the left side of the same
row or on the top of the same column of (i, j) (i.e., i′ = i
and i ≤ j′ ≤ j, or j′ = j and i ≤ i′ ≤ j) and with the same
hash value of (i, j) under h (i.e., h(i) = h(j) = h(i′) = h(j′)).
Clearly all nodes in Kh,i,j collide under h. For the given node
(i, j), we classify h as follows (see Figure 1 for an example):

• (i, j)-shared function. Kh,i,j contains at least a node
(i, j′) in a left square, and at least a node (i′, j) in a
top square.

• (i, j)-partially shared function. Function h is not in
case 1 and Kh,i,j contains at least a node node (i, j′)
with j′ < j, and at least a node (i′, j) with i′ > i. That
is, Kh,i,j contains only nodes in Gr,s and in the left
blocks, or only nodes in Gr,s and in the top blocks.

• (i, j)-proper function. Kh,i,j contains no points (i, j′)
for any i ≤ j′ < j or contains no points (i′, j) for any
i < i′ ≤ j. That is, Kh,i,j cannot contain at the same
time a point in a left square and a point in a top square.
Function h is said row (resp., column) proper if there
are no nodes in the same row (resp., column). We break
ties arbitrary but consistently if Kh,i,j is empty.

The shared mass ms
i,j is the sum of probabilities of all (i, j)-

shared functions. The partially shared mass mps
i,j is the sum

of probabilities of all (i, j)-partially shared functions. The
proper mass mp

i,j is the sum of probabilities of all (i, j)-
proper functions (the row/column proper mass includes only
row/column proper functions). We have mi,j = mp

i,j +mps
i,j +

ms
i,j . The mass Mr,s of a square Gr,s is the sum of the

masses of all its nodes, while the proper mass Mp
r,s is the

sum of proper masses of all its nodes. The sum of row proper
masses of all nodes in a row is at most one since a function
h is row proper for at most one node in a row. Similarly, the
sum of column proper masses of all nodes in a column is at
most one. Therefore, we have that

∑
r,sM

p
r,s ≤ 2n.

We now show that
∑

(i,j)∈Gr,s m
s
i,j ≤ 22rP2 for every Gr,s.

Consider a node (i, j) in a given Gr,s. For each (i, j)-shared
function h there is a P2-node colliding under f : indeed, Kh,i,j

contains nodes (i, j′) in the left blocks and (i′, j) in the top
blocks with h(i) = h(j) = h(i′) = h(j′) (i.e., s2r+1 ≤ j′ <
(2s+ 1)2r− 1 and (2s+ 1)2r− 1 < i′ ≤ (s+ 1)2r+1− 2); then

Q
u
er
y
p
oi
n
ts

q i

Data points pj
j = h − 1j = 0

i
=

0
i=

h
-1

G2,1

G3,0

G2,0

G1,0

G1,1

G1,2

G1,3

G0,0

G0,1

G0,2

G0,3

G0,4

G0,5

G0,6

G0,7

(1, 5)

T
op

b
lo
ck
s
of

G
2
,0

G0,0

G0,1

G1,0

G0,2

G1,1

G0,3

(0, 6)

G2,0

(2, 4)

Left blocks of G2,0

Data points pj

Q
u
er
y
p
oi
n
ts

q i

Figure 1: On the left, a 15× 15 grid: black nodes are P1-nodes, gray nodes are P2-nodes; the colored blocks denote the
partitioning of the lower triangle into squares. On the right, a zoom of the G2,0 square and of its left and top squares: the red
nodes collide under a (2, 4)-shared function; the green nodes collide under a (1, 5)-partially shared function; the cyan node
collide under a (0, 6)-proper function (specifically, row proper).

node (i′, j′) is a P2-node since i′ > j′ and collides under h.
By considering all nodes in Gr,s, we get that all the P2-nodes
that collide in a shared function are in the square of side
2r−1 and bottom-right node in ((2s+ 1)2r, (2s+ 1)2r − 2).
Since these P2-nodes have total mass at most 22rP2, the
claim follows.

We now prove that
∑

(i,j)∈Gr,s m
ps
i,j ≤ 2r+1Mp

r,s. A (i, j)-

partially shared function is (i′, j) or (i, j′)-proper for some
i′ < i and j′ > j, otherwise there would be a node in left
blocks and a node in top blocks that collide with (i, j) under
h, implying that h cannot be partially shared. Since an (i, j)-
proper function is partially shared for at most 2r+1 nodes in
Gr,s, we get∑

(i,j)∈Gr,s

mps
i,j ≤ 2r+1

∑
(i,j)∈Gr,s

mp
i,j = 2r+1Mp

r,s.

By the above two bounds, we get

Mr,s ≤
∑

(i,j)∈Gr,s

mp
i,j+mps

i,j+ms
i,j ≤ (2r+1 +1)Mp

r,s+22rP2.

Since Mr,s ≥ 22rP1 we get Mp
r,s ≥ (2r−1 − 1)(P1 − P2). By

summing among all squares, we get

2n ≥
`−1∑
r=0

2`−r−1−1∑
s=0

Mp
r,s > (P1 − P2)

n logn

4

from which the claim follows.

We are now ready to prove Theorem 2.

Proof. (Theorem 2) In all cases we use Lemma 4 with
different sequence length n.

First case. Let d ≥ 1. Consider the following query and data
points:

qi = (Uci, 0, . . . , 0) pj = (s/(Ucj), 0, . . . , 0)

with 0 ≤ i, j < n = blog1/c(U/n)c. We get pTj qi = ci−js: if

j ≥ i then pTj qi ≥ s and pTj qi ≤ cs otherwise. We observe that
data and query points are respectively contained in the unit
ball and in the ball of radius U since 0 ≤ i, j < blog1/c(U/n)c

When d ≥ 3 and s ≤ O (1/d), a longer sequence can be ob-
tained by concatenating suitable rotations of the previous se-
quences. Suppose for the sake of generality that d = 2d′ (the
general case requires some more tedious computations). Con-

sider the points qi,` and pj,` with 0 ≤ i, j < Θ
(

log1/c(U/s)
)

and 0 ≤ ` < d′. Point qi,` (resp., pj,`) is defined as follows:
positions 2n + 1 are set to

√
s for each ` ≤ n < d′ (resp.,

0 ≤ h < `); position 2`− 1 is set to Uci (resp., s/(Ucj)); the
remaining positions are set to 0. We get; pTj,`qi,` = sci−j as

in the previous case; pTj,`′qi,` = 0 if `′ < `; pTj,`′qi,` ≥ s if

`′ ≥ `. If s = O (1/d), data and query points are contained in
balls of radius 1 and U , respectively. Therefore, by suitably
concatenating the above data and query points by the index `

we get a sequence of size Θ
(
d log1/c(U/s)

)
and the claim

follows. Note that all inner products are non negative and
then the sequence is valid for signed and unsigned IPS.

Second case. For d ≥ 2, a longer sequence can constructed
for signed IPS. We use the following query and data points:

qi =

(
i

√
s(1− c)

U
,

√
s

U
, 0, . . . , 0

)
,

pj =
(√

sU(1− c),
√
sU(1− (1− c)j), 0, . . . , 0

)
,

with 0 ≤ i, j < n = Θ
(√

U/(s(1− c))
)

. Note that these

sequences are similar to the one used by [40]. We have
pTj qi = s(1−c)(i−j)+s: then, pTj qi ≥ s if j ≥ i and pTj qi ≤ cs
otherwise. As soon as 0 ≤ i, j < n = Θ

(√
U/(s(1− c))

)
,

data and query points are guarantee to be in balls of radius
respectively 1 and U . By applying the trick used in the previ-
ous case, it is possible to increase the length of the sequence
by a factor d/4 if s = O (1/d) by concatenating different
sequences given by rotations of the previous one. The second
claim follows. We observe that the above sequences may
generate large negative inner products and then they cannot
be used for unsigned IPS.

Third case. Finally, we consider the case d ≥ Θ
(
U5/(c2s5)

)
.

We now provide sequences of data/query points of length

n = 2
√
U/(8s). Suppose there exists a family Z of 2n − 1

vectors such that |zTi zj | ≤ ε and (1 − ε) ≤ zTi zi ≤ (1 + ε)

for any zi 6= zj , for ε = c/(2 log2 n). It can be shown with
the Johnson-Lindenstrauss lemma that such a family exists
when d = Ω

(
ε−2 logn

)
= Ω

(
(log5 h)/c2

)
(for an analysis

see e.g. [43]). For notational convenience, we denote the
vectors in Z as follows: zb0 , zb0,b1 , . . . , zb0,b1,...,blogn−1 for
each possible value b0, . . . , blogn−1 ∈ {0, 1}. Let bi,` denote
the `-th bit of the binary representation of i and with b̄i,` its
negation, where we assume ` = 0 to be the most significant
bit. We construct the following query and data sets:

qi =
√

2sU

logn−1∑
`=0

b̄i,`zbi,0,...bi,`−1,b̄i,`

pj =
√

2s/U

logn−1∑
`=0

bj,`zbj,0,...bj,`−1,bj,`

Since the inner product of two distinct points in Z is in the
range [−ε, ε], we have that pTj qi can be upper bounded as

pTj qi ≤ ε2s(log2 n− logn)+

+ 2s

logn−1∑
`=0

bj,`b̄i,`zbj,0,...bj,`−1,bj,`zbi,0,...bi,`−1,b̄i,`

Suppose i > j. Then there exists a bit position `′ such that
bi,`′ = 1, bj,`′ = 0 and bi,` = bj,` for all ` < `′. We get
zbj,0,...bj,`−1,bj,` 6= zbi,0,...bi,`,b̄i,` for all ` 6= `′ and bj,`bi,` = 0

for all ` = `′. It then follows that pTj qi ≤ ε2s log2 n when

i > j. On the other hand we get that pTj qi can be lower
bounded as

pTj qi ≥ −ε2s(log2 n− logn)+

+ 2s

logn−1∑
`=0

bj,`b̄i,`zbj,0,...bj,`−1,bj,`zbi,0,...bi,`−1,b̄i,`

Suppose i ≤ j. Then there exists an index `′ such that
bj,`′ = 1, bi,`′ = 0 and bj,` = bi,` for all ` < `′. We get
zbj,0,...bj,`′−1,bj,`′ = zbi,0,...bi,`′−1,b̄i,`

. It then follows that

pTj qi ≥ −ε2s log2 n+ 2s. By setting ε = c/(2 log2 n), we get

that pTj qi ≤ cs if j < i and pTj qi ≥ s if j ≥ i. We now
observe that each qi (resp., pj) is given by the sum of at

most logn vectors with norm at most
√

2sU(1 + ε) (resp.,√
2s/U(1 + ε)). Since n = 2

√
U/(8s), data and query points

are respectively contained within balls of radius 1 and U .

Finally, we observe that in all three cases the gap becomes 0
if the query ball is unbounded. Then, there cannot exist an
asymmetric LSH with P1 > P2.

4. UPPER BOUNDS
This section contains three observations with implications
for IPS join and its indexing version. We first notice in
Section 4.1 that by plugging the best known LSH for `2
distance on a sphere [10] into a reduction presented in [13,
40], we get a data structure based on LSH for signed MIPS
with search time exponent ρ = (1− s)/(1 + (1− 2c)s).

Then, in Section 4.2, we show how to circumvent the results
in [40, 46] showing that symmetric LSH is not possible when
the data and query domains coincide (while an asymmetric
LSH does exist). We use an slightly modified definition of
LSH that disregards the collision probability of 1 for pairs of

identical vectors, and assume that vectors are represented
with finite precision. The LSH construction uses explicit
incoherent matrices built using Reed-Solomon codes [39] to
implement a symmetric version of the reduction in [13, 40].

Finally, in Section 4.3 we solve unsigned (cs, s) join using
linear sketches for `p norms from [6]. Given κ ≥ 2 we obtain

a approximation factor c ≥ 1/n1/κ using Õ
(
dn2−2/κ

)
time.

Although this trade-off is not that strong, it is not far from
the conditional lower bound in Theorem 1.

4.1 Asymmetric LSH for signed IPS
We assume the data and query domains to be d-dimensional
balls with respective radius 1 and U . Vectors are embedded
into a (d+ 2)-dimensional unit sphere using the asymmetric

map as in [40]: a data vector p is mapped to (p,
√
||p||2, 0),

while a query q is mapped to (q/U, 0,
√
||q||2/U). This trans-

formation does not change inner products and then signed
inner product search can be seen as an instance of ANN in `2
with distance threshold r =

√
2(1− s) and approximation

c′ =
√

(1− cs)/(1− s). The latter can be solved in space
O(n1+ρ + dn) and query time O(nρ) using the LSH construc-
tion of [10]. We get the following ρ value (for the LSH gap
as well as for the exponent of the running time):

ρ =
1

2c′2 − 1
=

1− s
1 + (1− 2c)s

. (1)

The obtained running time is:

• stronger than the one from [40] in all regimes;

• stronger than the one in [47], tailored to binary data,
in most parameter settings.

The latter conclusion is somewhat surprising, since the data
structure we obtain works for non-binary vectors as well.
We point out that in practice one may want to use a recent
LSH family from [8] that—both in theory and in practice—is
superior to the hyperplane LSH from [17] used in [40].

In Figure 2, we plot the ρ values of three LSH construc-
tions: the one proposed here, the one from [40], and the one
from [47]. The latter works only for binary vectors. We point
out that our bound is always stronger than the one from [40]
and sometimes stronger than the one from [47], despite that
the latter is tailored for binary vectors.

4.2 Symmetric LSH for almost all vectors
Neyshabur and Srebro [40] show that an asymmetric view
on LSH for signed IPS is required. Indeed they show that
a symmetric LSH for signed IPS does not exist when data
and query domains are balls of the same radius, while an
asymmetric LSH does exist. (On the other hand, when the
data domain is a ball of given radius U and the query domain
is a sphere of same radius, a symmetric LSH does exist.)
In this section we show that even when data and query
spaces coincide a nontrivial symmetric LSH does exist if we
disregard the trivial collision probability of 1 when data and
query points are identical.

Figure 2: Our ρ value (DATA-DEP) compared to that of [40] (SIMP) and the binary data only of [47] (MH-ALSH).

We first show how to reduce signed IPS to the case where
data and query vectors lie on a unit sphere. The reduction is
deterministic and maintains inner products up to an additive
error ε for all vectors x, y with x 6= y. We then plug in
any Euclidean LSH for ANN on the sphere, for example the
one from [10]. This reduction treats data and query vectors
identically, unlike the one from [40], and thus we are able to
obtain a symmetric LSH.

Assume that all the coordinates of all the data and queries
are encoded as k-bit numbers and that the data and query
vectors are in the unit ball. The idea is the following. There
are at most N = 2O(dk) possible data vectors and queries.
Imagine a collection of N unit vectors v1, . . . , vN such that
for every i 6= j one has |vTi vj | ≤ ε. Then, it is easy to check

that a map of a vector p to f(p) = (p,
√

1− ‖p‖2 · vp) maps
a vector from a unit ball to a unit sphere and, moreover, for
p 6= q one has |f(p)T f(q)− pT q| ≤ ε.

What remains is to construct such a collection of vectors vi.
Moreover, our collection of vectors must be explicit in a
strong sense: we should be able to compute vu given a
vector u (after interpreting it as an dk-bit string). Such a
constructions are well known, e.g., in [39] it is shown how to
build such vectors using Reed-Solomon codes. The resulting
dimension is O

(
ε−2 logN

)
= O

(
kd/ε2

)
[33, 39].

After performing such a reduction we can apply any state-
of-the-art LSH (or data structure for ANN) for `2 norm on
a sphere, e.g. from [10, 8], with distance threshold r2 =
2(1− s+ ε), approximation factor c′2 = (1− cs− ε)/r2. If ε
is sufficiently small we get a ρ value close to the one in (1).
The final result is therefore a symmetric LSH for symmetric
domains that does not provide any collision bound for all
pairs (q, p) with q = p since the guarantees on the inner
product fail for these pairs. This LSH can used for solving
signed (cs, s) IPS as a traditional LSH [7], although it is
required an initial step that verifies whether a query vector
is in the input set and, if this is the case, returns the vector
q itself if qT q ≥ s.

4.3 Unsigned IPS via linear sketches
In this section we propose a linear sketch for unsigned c-
MIPS, that can be used for solving unsigned (cs, s) join. The
unsigned c-MIPS is defined as follows: given a set P ⊂ Rd of n

vectors, construct a data structure that efficiently returns, for
a given query point q, a point p ∈ P where |pT q| ≥ c(p′T q),
where p′ is the point in P with maximum absolute inner
product with q. The unsigned (cs, s) join between sets P
and Q can be computed by constructing a data structure for
unsigned c-MIPS for points in P and then performs a query
for each point in Q.

Of independent interest, we notice that unsigned c-MIPS can
be solved by a data structure for unsigned (cs, s) search. Let
D be a data structure for unsigned (cs, s) search on the data
set P , and suppose we are given a query q and the promise
that there exists p′ ∈ P such that p′T q > γ. Then, unsigned
c-MIPS can be solved by performing on D the queries q/ci for
any 0 ≤ i ≤ dlog1/c(s/γ)e. Intuitively, we are scaling up the
query q until the largest inner product becomes larger than
the threshold s. We notice that γ can be also considered as
the smallest inner product that can be stored according to
the numerical precision of the machine.

Our data structure for unsigned c-MIPS requires Õ
(
dn2−2/κ

)
construction time and Õ

(
dn1−2/κ

)
query time and provide

a c ≥ 1/n1/κ approximation with high probability, for any
κ ≥ 2. This gives an algorithm for unsigned (cs, s) join on

two sets of size n requiring time Õ
(
dn2−2/κ

)
. As shown in

Theorem 1, we are unlikely to significant improve further the
approximation factor if the OVP conjecture is true.

First, suppose we are only interested in approximating the
value of maxp |qtp| and not to find the corresponding vector.
Then, the problem is equivalent to estimating ‖Aq‖∞, where
A is an n × d matrix, whose rows are data vectors. This
problem can be tackled using linear sketches (for an overview
see [58, 9]). More specifically, we use the following result
from [6]: for every 2 ≤ κ ≤ ∞ there exists a distribution

over Õ(n1−2/κ)× n matrices Π such that for every x ∈ Rn
one has:

Pr
Π

[(1− c)‖x‖κ ≤ ‖Πx‖∞ ≤ (1 + c)‖x‖κ] ≥ 0.99

for a suitable constant 0 < c < 1. Thus, to build a data
structure for computing ‖Aq‖∞, we sample a matrix Π ac-
cording to the the aforementioned result in [6] and compute

the Õ
(
n1−2/κ

)
× d matrix As = ΠA. Then, for every

query q, we compute ‖Asq‖∞ in time Õ
(
d · n1−2/κ

)
, which

is a O
(
n1/κ

)
-approximation to ‖Aq‖∞ with probability at

least 0.99. Note that we can reduce the probability of error
from 0.01 to δ > 0 as usual, by building O(log(1/δ)) inde-
pendent copies of the above data structure and reporting the
median estimate.

We now consider the recovery of the vector that almost
maximizes |ptq|. We recover the index of the desired vector
bit by bit. That is, for every bit index 0 ≤ i < logn, we
consider every binary sequence b of length i and build a data
structure for the dataset containing only the vectors in P
for which the binary representations of their indexes have
prefix b. Although the number of data structures is n, the

total required space is still Õ
(
dn1−2/κ

)
since each vector

appears in only logn data structures. The claim stated at
the beginning follows.

5. REFERENCES
[1] A. Abboud, V. Vassilevska Williams, and H. Yu.

Matching triangles and basing hardness on an
extremely popular conjecture. In Proc. 47th ACM on
Symposium on Theory of Computing (STOC), pages
41–50, 2015.

[2] A. Abboud, R. Williams, and H. Yu. More applications
of the polynomial method to algorithm design. In Proc.
26th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 218–230, 2015.

[3] M. Abramowitz and I. A. Stegun. Handbook of
mathematical functions: with formulas, graphs, and
mathematical tables. Courier Corporation, 1964.

[4] P. Achlioptas, B. Schölkopf, and K. Borgwardt.
Two-locus association mapping in subquadratic time.
In Proc. 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD),
pages 726–734. ACM, 2011.

[5] J. Alman and R. Williams. Probabilistic polynomials
and hamming nearest neighbors. In Proc. 56th IEEE
Symposium on Foundations of Computer Science
(FOCS), 2015.

[6] A. Andoni. High frequency moments via max-stability.
Unpublished manuscript, 2012.

[7] A. Andoni and P. Indyk. Near-optimal hashing
algorithms for approximate nearest neighbor in high
dimensions. Commun. ACM, 51(1):117–122, 2008.

[8] A. Andoni, P. Indyk, M. Kapralov, T. Laarhoven,
I. Razenshteyn, and L. Schmidt. Practical and optimal
LSH for angular distance. In Proc. 28th Conference on
Neural Information Processing Systems (NIPS), 2015.

[9] A. Andoni, R. Krauthgamer, and I. P. Razenshteyn.
Sketching and embedding are equivalent for norms. In
Proc. 47th ACM on Symposium on Theory of
Computing, (STOC), pages 479–488, 2015.

[10] A. Andoni and I. Razenshteyn. Optimal
data-dependent hashing for approximate near
neighbors. In Proc. 47th Symposium on Theory of
Computing (STOC), pages 793–801, 2015.

[11] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In Proc. International Conference
on Very Large Data Bases (VLDB), pages 918–929,
2006.

[12] N. Augsten and M. H. Böhlen. Similarity joins in
relational database systems. Synthesis Lectures on Data
Management, 5(5):1–124, 2013.

[13] Y. Bachrach, Y. Finkelstein, R. Gilad-Bachrach,
L. Katzir, N. Koenigstein, N. Nice, and U. Paquet.
Speeding up the xbox recommender system using a
euclidean transformation for inner-product spaces. In
Proc. 8th ACM Conference on Recommender Systems,
pages 257–264, 2014.

[14] B. Bahmani, A. Goel, and R. Shinde. Efficient
distributed locality sensitive hashing. In Proc. ACM
International Conference on Information and
Knowledge Management (CIKM), pages 2174–2178,
2012.

[15] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In Proc. International
Conference on World Wide Web (WWW), pages
131–140, 2007.

[16] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In Proc. 34 ACM Symposium on
Theory of computing (STOC), pages 380–388. ACM,
2002.

[17] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In Proc. 34th ACM Symposium
on Theory of Computing (STOC), pages 380–388, 2002.

[18] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In
Proc.22nd International Conference on Data
Engineering (ICDE), page 5, 2006.

[19] Y. Chen and J. M. Patel. Efficient evaluation of
all-nearest-neighbor queries. In Proc. International
Conference on Data Engineering (ICDE), pages
1056–1065, 2007.

[20] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk,
R. Motwani, J. D. Ullman, and C. Yang. Finding
interesting associations without support pruning. IEEE
Trans. Knowl. Data Eng., 13(1):64–78, 2001.

[21] R. R. Curtin, A. G. Gray, and P. Ram. Fast exact
max-kernel search. In Proc. 13th SIAM International
Conference on Data Mining (SDM), pages 1–9, 2013.

[22] A. Das, M. Datar, A. Garg, and S. Rajaram. Google
news personalization: scalable online collaborative
filtering. In Proc. International Conference on World
Wide Web (WWW), pages 271–280, 2007.

[23] T. Dean, M. Ruzon, M. Segal, J. Shlens,
S. Vijayanarasimhan, and J. Yagnik. Fast, accurate
detection of 100,000 object classes on a single machine.
In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, Washington, DC, USA, 2013.

[24] P. Felzenszwalb, R. Girshick, D. McAllester, and
D. Ramanan. Object detection with discriminatively
trained part-based models. IEEE Transactions on
Pattern Analysis and Machine Intelligence,,
32(9):1627–1645, 2010.

[25] A. Gionis, P. Indyk, and R. Motwani. Similarity search
in high dimensions via hashing. In Proc. 25th
International Conference on Very Large Data Bases
(VLDB), pages 518–529, 1999.

[26] S. Har-Peled, P. Indyk, and R. Motwani. Approximate
nearest neighbor: Towards removing the curse of
dimensionality. Theory of computing, 8(1):321–350,
2012.

[27] E. H. Jacox and H. Samet. Metric space similarity joins.
ACM Transactions on Database Systems (TODS),
33(2):7, 2008.

[28] Y. Jiang, D. Deng, J. Wang, G. Li, and J. Feng.
Efficient parallel partition-based algorithms for
similarity search and join with edit distance constraints.
In Proc. Joint EDBT/ICDT Workshops, pages 341–348.
ACM, 2013.

[29] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane
training of structural svms. Mach. Learn., 77(1):27–59,
2009.

[30] M. Karppa, P. Kaski, and J. Kohonen. A faster
subquadratic algorithm for finding outlier correlations.
In Proc. 27th ACM-SIAM Symposium on Discrete
Algorithms (SODA16), 2016.

[31] N. Koenigstein, P. Ram, and Y. Shavitt. Efficient
retrieval of recommendations in a matrix factorization
framework. In Proc. 21st ACM International
Conference on Information and Knowledge
Management (CIKM), pages 535–544, 2012.

[32] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, Aug. 2009.

[33] K. G. Larsen and J. Nelson. The johnson-lindenstrauss
lemma is optimal for linear dimensionality reduction.
CoRR, abs/1411.2404, 2014.

[34] D. Lee, J. Park, J. Shim, and S.-g. Lee. An efficient
similarity join algorithm with cosine similarity
predicate. In Database and Expert Systems
Applications, pages 422–436. Springer, 2010.

[35] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A
partition-based method for similarity joins. Proc.
VLDB Endowment, 5(3):253–264, 2011.

[36] Y. Low and A. X. Zheng. Fast top-k similarity queries
via matrix compression. In Proc. ACM International
Conference on Information and Knowledge
Management (CIKM)KM, pages 2070–2074. ACM,
2012.

[37] J. Lu, C. Lin, W. Wang, C. Li, and H. Wang. String
similarity measures and joins with synonyms. In Proc.
2013 ACM SIGMOD International Conference on
Management of Data, pages 373–384, 2013.

[38] R. Motwani, A. Naor, and R. Panigrahi. Lower bounds
on locality sensitive hashing. In Proc. 22nd Symposium
on Computational Geometry (SoCS), pages 154–157,
2006.

[39] J. Nelson, H. L. Nguyen, and D. P. Woodruff. On
deterministic sketching and streaming for sparse
recovery and norm estimation. Linear Algebra and its
Applications, 441(0):152 – 167, 2014.

[40] B. Neyshabur and N. Srebro. On symmetric and
asymmetric lshs for inner product search. In Proc. 32nd
International Conference on Machine Learning (ICML),
2015.

[41] R. O’Donnell, Y. Wu, and Y. Zhou. Optimal lower
bounds for locality-sensitive hashing (except when q is
tiny). ACM Trans. Comput. Theory, 6(1):5:1–5:13,
2014.

[42] R. Pagh, N. Pham, F. Silvestri, and M. Stöckel.
I/O-efficient similarity join. In Proc. 23rd European
Symposium on Algorithms (ESA), pages 941–952, 2015.

[43] R. Pagh, F. Silvestri, J. Sivertsen, and M. Skala.
Approximate furthest neighbor in high dimensions. In
Proc. 8th International Conference on Similarity Search
and Applications (SISAP), volume 9371 of LNCS, pages
3–14, 2015.

[44] P. Ram and A. G. Gray. Maximum inner-product
search using cone trees. In Proc. 18th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), pages 931–939, 2012.

[45] V. Satuluri and S. Parthasarathy. Bayesian locality
sensitive hashing for fast similarity search. Proc. VLDB
Endowment, 5(5):430–441, 2012.

[46] A. Shrivastava and P. Li. Asymmetric LSH (ALSH) for
sublinear time maximum inner product search (MIPS).
In Proc. 27th Conference on Neural Information
Processing Systems (NIPS), pages 2321–2329, 2014.

[47] A. Shrivastava and P. Li. Asymmetric minwise hashing
for indexing binary inner products and set containment.
In Proc. 24th International Conference on World Wide
Web (WWW), pages 981–991, 2015.

[48] Y. N. Silva, W. G. Aref, and M. H. Ali. The similarity
join database operator. In Proc. International
Conference on Data Engineering (ICDE), pages
892–903. IEEE, 2010.

[49] N. Srebro, J. D. M. Rennie, and T. S. Jaakola.
Maximum-margin matrix factorization. In Advances in
Neural Information Processing Systems 17, pages
1329–1336. MIT Press, 2005.

[50] N. Srebro and A. Shraibman. Rank, trace-norm and
max-norm. In Proc. 18th Conference on Learning
Theory COLT, volume 3559 of LNCS, pages 545–560,
2005.

[51] C. Teflioudi, R. Gemulla, and O. Mykytiuk. Lemp:
Fast retrieval of large entries in a matrix product. In
Proc. ACM SIGMOD International Conference on
Management of Data, pages 107–122. ACM, 2015.

[52] G. Valiant. Finding correlations in subquadratic time,
with applications to learning parities and the closest
pair problem. J. ACM, 62(2):13:1–13:45, 2015.

[53] J. Wang, G. Li, and J. Fe. Fast-join: An efficient
method for fuzzy token matching based string
similarity join. In Proc. International Conference on
Data Engineering (ICDE), pages 458–469. IEEE, 2011.

[54] J. Wang, G. Li, and J. Feng. Can we beat the prefix
filtering?: an adaptive framework for similarity join
and search. In Proc. ACM SIGMOD International
Conference on Management of Data, pages 85–96.
ACM, 2012.

[55] Y. Wang, A. Metwally, and S. Parthasarathy. Scalable
all-pairs similarity search in metric spaces. In Proc.
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 829–837,
2013.

[56] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In Proc. 24rd
International Conference on Very Large Data Bases
(VLDB), pages 194–205, 1998.

[57] R. Williams. A new algorithm for optimal 2-constraint
satisfaction and its implications. Theoretical Computer
Science, 348(2):357–365, 2005.

[58] D. P. Woodruff. Sketching as a tool for numerical linear

algebra. Foundations and Trends in Theoretical
Computer Science, 10:1–157, 2014.

[59] C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: an
efficient method for knn join processing. In Proc.
VLDB, pages 756–767, 2004.

[60] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient
similarity joins for near duplicate detection. In Proc.
International Conference on World Wide Web
(WWW), pages 131–140, 2008.

[61] R. B. Zadeh and A. Goel. Dimension independent
similarity computation. The Journal of Machine
Learning Research, 14(1):1605–1626, 2013.

[62] P. Zezula, G. Amato, V. Dohnal, and M. Batko.
Similarity search: the metric space approach, volume 32.
Springer Science & Business Media, 2006.

[63] X. Zhang, F. Zou, and W. Wang. Fastanova: an
efficient algorithm for genome-wide association study.
In Proc. ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages
821–829. ACM, 2008.

