
On the Problem of p−1
1 in Locality-Sensitive

Hashing

Thomas Dybdahl AhleB[0000−0001−9747−0479]

IT University and BARC, Copenhagen
thomas@ahle.dk

http://thomasahle.com

Abstract. A Locality-Sensitive Hash (LSH) function is called (r, cr, p1, p2)-
sensitive, if two data-points with a distance less than r collide with
probability at least p1 while data points with a distance greater than cr
collide with probability at most p2. These functions form the basis of the
successful Indyk-Motwani algorithm (STOC 1998) for nearest neighbour
problems. In particular one may build a c-approximate nearest neighbour
data structure with query time Õ(nρ/p1) where ρ = log 1/p1

log 1/p2
∈ (0, 1).

This is sub-linear as long as p1 is not too small. Such an algorithm is
significant, since most high dimensional nearest neighbour problems suffer
from the curse of dimensionality, and can’t be solved exact, faster than a
brute force linear-time scan of the database.
Unfortunately many of the best LSH functions tend to have very low
collision probabilities, including the best functions for Cosine and Jaccard
Similarity. This means that the nρ/p1 query time of LSH is often not
sub-linear after all, even for approximate nearest neighbours!
In this paper, we improve the general Indyk-Motwani algorithm to reduce
the query time of LSH to Õ(nρ/p1−ρ1) (and the space usage correspond-
ingly.) Since nρ/p1−ρ1 < n ⇔ p1 > n−1, our algorithm always obtains
sublinear query time, for all collision probabilities at least 1/n. For p1
and p2 small enough, our improvement over all previous methods can be
up to a factor n in both query time and space.
The improvement comes from a simple change to the Indyk-Motwani
algorithm, which we call “LSH with High-Low Tables“. This technique
can easily be implemented in existing software packages.

Keywords: locality-sensitive hashing · nearest neighbour · similarity
search

1 Introduction

Locality Sensitive-Hashing (LSH) [16] is one of the most efficient approaches to
the nearest neighbour search problem in high dimensional spaces. It comes with
theoretical guarantees, and it has the advantage of easy adaption to nearly any
metric or similarity function one might want to use for search.

The (r1, r2)-near neighbour problem is defined as follows: Given a set X of
points, we build a data-structure, such that given a query, q we can quickly find

http://thomasahle.com

a point x ∈ X with distance < r2 to q, or determine that X has no points with
distance ≤ r1 to q. Given a solution to this “gap” problem, one can obtain a
r1/r2-approximate nearest neighbour data structure, or even an exact1 solution
using known reductions [?].

For any measure of similarity, the gap problem can be solved by LSH: we find
a distribution of functions H, such that p1 ≥ Prh∼H [h(x) = h(y)] when x and
y are similar (distance ≤ r1), and p2 ≤ Prh∼H [h(x) = h(y)] when x and y are
dissimilar (distance ≥ r2). Such a distribution is called (r1, r2, p1, p2)-sensitive.
If p1 > p2 the LSH framework gives a data-structure with query time Õ(nρ/p1)

for ρ = log 1/p1
log 1/p2

, which is usually significantly faster than the alternatives.

At least when p1 is not too small.

The two most common families of LSH is Cross-Polytope (or Spherical)
LSH [5] for Cosine similarity and MinHash [10,9] for Jaccard Similarity.

Cross-Polytope is the basis of the Falconn software package [20], and solves

the (r, cr)-near neighbour problem on the sphere in time Õ(n1/c
2

/p1). Here

p1 = exp(− τ2

4−τ2 (1 − o(1)) log d), where τ = ‖p − q‖2 ∈ [0, 2] is the distance

between two close points. We see that already at τ ≈
√

2 (which corresponds
to near orthogonal vectors) the 1/p1 factor results in a factor d slow-down. For
larger τ ∈ (

√
2, 2] the slow-down can grow arbitrary large. Using dimensionality

reduction techniques, like the Johnson Lindenstrauss transform, one may assume
d = ε−2 log n at the cost of a factor 1 + ε distortion of the distances. However if ε
is just 1/100, the slow-down factor of d is still worse than, say, n1/2 for datasets
of size up to 108, and so if c ≤

√
2 we get that nρ/p1 is larger than n. So worse

than a brute force scan of the database!

The MinHash algorithm was introduced by Broder et al. for the Alta Vista
search engine, but is used today for similarity search on sets in everything from
natural language processing to gene sequencing. MinHash solves the (j1, j2) gap
similarity search problem, where j1 ∈ (0, 1) is the Jaccard Similarity of similar

sets, and j2 is that of dissimilar sets, in time Õ(nρ/j1) where ρ = log 1/j1
log 1/j2

. (In

particular MinHash is (j1, j2, j1, j2)-sensitive in the sense defined above.) Now
consider the case j1 = n−1/4 and j2 = n−3/10. This is fairly common as illustrated

in fig. 1a. In this case ρ = log 1/j1
log 1/j2

= 5/6, so we end up with nρ/j1 = n13/12.

Again worse than a brute force scan of the database!

In this paper we reduce the query time of LSH to nρ/p1−ρ1 , which is less
than n for all p1 > 1/n. In the MinHash example above, we get nρ/p1−ρ1 =
n5/6+1/4(1−5/6) = n7/8. More than a factor n0.208 improvement(!) In general the
improvement of p−ρ1 may be as large as a factor of n when p1 and p2 are both
close to 1/n. This is illustrated in fig. 1b.

The improvements to LSH comes from a simple observation: During the
algorithm of Indyk and a certain “amplification” procedure has to be applied

1 In general we expect the exact problem to be impossible to solve in sub-linear time,
given the hardness results of [4,1]. However for practical datasets it is often possible.

κ = logn
log 1/p2

times. When log 1/p2 does not divide n, which is extremely likely,

the amount of amplification has to be approximated by the next integer. We
propose instead an ensemble of two kinds of LSH tables with respectively dκe
and bκc concatenations of the hash function. We call those respectively “High”
and “Low” tables. When analysed sufficiently precisely yields the improvements
described above.

1.1 Related Work

We will review various directions in which LSH has been improved and generalized,
and how those results related to what is presented in the present article.

In many cases, the time required to sample and evaluate the hash functions
dominate the time required by LSH. Recent papers [15,11] have reduced the
number of distinct calls to the hash functions which is needed. The most recent
paper in the line of work is [11], which reduces the number of calls to (logn

log 1/p2
)2/p1.

On top of that, however, they still require nρ/p1 work, so the issue with small p1
isn’t touched upon. In fact, some of the algorithms in [11] increase the dependency
from nρ/p1 to nρ/(p1 − p2).

Other work has sought to generalize the concept of Locality Sensitive Hashing
to so-called Locality Sensitive Filtering, LSF [8]. However, the best work for set
similarity search based on LSF [3,12] still have factors similar in spirit to p−11 .
E.g., the Chosen Path algorithm in [12] uses query time Õ(nρ/b1), where b1 is
the similarity between close sets.

A third line of work has sought to derandomize LSH. The result is so-called
Las Vegas LSH [2,21]. Here the families H are built combinatorially, rather than
at random, to guarantee the data structure always return a near neighbour, when
one exists. While these methods don’t have probabilities, they still end up with
similar factors for similar reasons.

As mentioned, the reason p−11 shows up in all these different approaches, is
that they all rely on the same amplification procedure, which has to be applied
an integer number of times. One might wonder if tree based methods, which
do an adaptive amount of amplification, could get rid of the 1/p1 dependency.
However as evidenced by the classical and current work [7,6,13,14] these methods
still have a factor 1/p1. We leave it open whether this might be avoidable with
better analysis, perhaps inspired by our results for “High-Low” tables.

Finally we note that in their seminal paper on tight LSH lower bounds [19],
O’Donnell and Wu mention discuss exactly the problem with p1 and p2 polyno-
mially small. They consider whether the lower bounds could be made tighter to
capture the factor 1/p1. We similarly now wonder if the factor 1/p1−ρ1 could be
shown optimal.

2 Preliminaries

Before we give the new LSH algorithm, we will recap the traditional analysis. For
a more comprehensive introduction to LSH, see the Mining of Massive Datasets

n−1/2 n−1/3 n−1/6 n0

AOL
KOSAREK
DBLP-2Q

BMS
UNIFORM

ZIPF
FLICKR
ENRON

NETFLIX
LIVEJOURNAL

DBLP-3Q
SPOTIFY
ORKUT
DBLP-4Q

(a) Density plots of all pairwise Jaccard similarities in the datasets studied by Mann
et al. [18] written in terms of the size of their corresponding datasets. Curiously the
largest datasets, like Orkut and Spotify, have the smallest median Jaccard similarities,
even when expressed in terms of the dataset size.
We see that reasonable values for j1 = p1 range between n−1/3 and n−1/6.

n−0.0 n−0.2 n−0.4 n−0.6 n−0.8 n−1.0

p2

n−0.0

n−0.2

n−0.4

n−0.6

n−0.8

n−1.0

p
1

Savings over LSH

n0.0

n0.2

n0.4

n0.6

n0.8

n1.0

Sa
vi
ng

: 1
/p

ρ 1

(b) p−ρ1 : The possible improvements in query time and space, over
classical LSH, as a function of p1 and p2. With p1 = n−1/4 and
p2 = n−1/3 we save a factor of n3/16 = n0.1875.

Fig. 1: Overview over available savings

book [17], Chapter 3. In the remainder of the article we will use the notation
[n] = {1, . . . , n}.

Assume we are given a (r1, r2, p1, p2)-sensitive LSH family, H, as defined in
the introduction. Let k and L be some integers defined later, and let [m] be the
range of the hash functions, h ∈ H. Let n be an upper bound on the number of
points to be inserted. 2 The Indyk-Motwani data-structure consists of L hash
tables, each with mk hash buckets.

To insert a point, x, we draw L·k functions from H, denoted by (hi,j)i∈[L],j∈[k].
In each table i ∈ [L] we insert x into the bucket keyed by (hi,1(x), hi,2(x), . . . , hi,k(x)).
Given a query point q, the algorithm iterates over the L tables and retrieves the
data points hashed into the same buckets as q. The process stops as soon as a
point is found within distance r1 from q.

The algorithm as described has the performance characteristics listed below.
Here we assume the hash functions can be sampled and evaluated in constant
time. If this is not the case, one can use the improvements discussed in the related
work.

– Query time: O(L(k + npk2)) = O(nρp−11 log n).
– Space: O(nL) = O(n1+ρp−11) plus the space to store the data points.
– Success probability 99%.

To get these bounds, we have defined k = d logn
log 1/p2

e and

L = dp−k1 e ≤ exp
(

log 1/p1 · d logn
log 1/p2

e
)

+ 1 ≤ nρ/p1 + 1.

It’s clear from this analysis that the p−11 factor is only necessary when logn
log 1/p2

is not an integer. However in those cases it is clearly necessary, since there is
no obvious way to make a non-integer number of function evaluations. We also
cannot round k down instead of up, since the number of false positives would
explode: rounding down would result in a factor of p−12 instead of p−11 — much
worse.

3 LSH with High-Low Tables

The idea of the main algorithm is to create some LSH tables with k rounded
down, and some with k rounded up. We call those respectively “high probability”
tables and “low probability” tables. In short “LSH with High-Low Tables”.

The main theorem is the following:

Theorem 1. Let H be a (r1, r2, p1, p2)-sensitive LSH family, and let ρ = log 1/p1
log 1/p2

.

Assume p1 > 1/n and p2 > 1/n. Then High-Low tables give a solution to the
(r1, r2)-near neighbour problem with the following properties:

2 If we don’t know how many points will be inserted, several black box reductions
allow transforming LSH into a dynamic data structure.

– Query time: O(nρ/p1−ρ1 log n).

– Space: O(nL) = O(n1+ρ/p1−ρ1) plus the space to store the data points.

– Success probability 99%.

Proof. Assume r1, r2, p1, p2 are given. Define ρ = log 1/p1
log 1/p2

, κ = logn
log 1/p2

, and

α = dκe − κ ∈ [0, 1). We build bac+ dbe tables (for a, b ≥ 0 to be defined), where
the bac tables are “Low” tables, which use the hash function concatenated bκc
times as keys, and the remaining dbe are “High” tables, which use it concatenated
dκe times.

The total number of High and Low tables to query is then dbe + bac. The
expected total number of far points we have to retrieve is

n(bacpbκc2 + dbepdκe2) = n(bacpκ−1+α2 + dbepκ+α2)

= bacp−1+α2 + dbepα2
≤ ap−1+α2 + (b+ 1)pα2

≤ ap−1+α2 + bpα2 + 1.

For the second equality, we used the definition of κ: pκ2 = 1/n. We only count the
expected number of points seen that are at least r2 away from the query. This is
because the algorithm, like classical LSH, terminates as soon as it sees a point
with distance less than r2.

Given any point in the database within distance r1 we must be able to find it
with high enough probability. This requires that the query and the point shares
a hash-bucket in one of the tables. The probability that this is doesn’t happen in
any of the bac low tables, and not any of the dbe high tables is

(1− pbκc1)bac(1− pdκe1)dbe ≤ (1− pbκc1)a−1(1− pdκe1)b

≤ exp(−apbκc1 − bpdκe1)(1− pbκc1)−1

= exp(−(ap−1+α1 + bpα1)n−ρ)(1− pbκc1)−1

≤ exp(−(ap−1+α1 + bpα1)n−ρ) · 2.

For the first inequality we used that 1 − x ≤ exp(−x). For the equality, we
used the definition of κ and ρ: pκ1 = pρκ2 = n−ρ. For the last inequality we have
assumed p2 > 1/n so bκc ≥ 1, and that p1 < 1/2, since otherwise we could just
get the theorem from the classical LSH algorithm.

We now define a and b, both ≥ 0, such that

ap−1+α2 + bpα2 = a+ b and (1)

ap−1+α1 + bpα1 = nρ. (2)

By the previous calculations this will guarantee the number of false positives is
not more than the number of tables, and a constant success probability.

We can achieve this by taking[
a
b

]
=

[
p−1+α2 − 1 pα2 − 1
p−1+α1 pα1

]−1 [
0
nρ

]
=

nρ

(p−1+α2 − 1)pα1 + (1− pα2)p−1+α1

[
1− pα2

p−1+α2 − 1

]
.

We can check that both values are non-negative, since α ∈ [0, 1], so the definition
is meaningful.

When actually implementing “LSH with High-Low Tables”, these are the
values you should use for the number of respectively the high and low probability
tables. That will ensure you take full advantage of when α is not worst case, and
you may do even better than the theorem assumes.

To complete the theorem we need to prove a+ b ≤ nρpρ−11 . For this we bound

a+ b

nρ
=

p−1+α2 − pα2
(p−1+α2 − 1)pα1 + (1− pα2)p−1+α1

≤
(

(p1 − p2) log 1/p1
(1− p1) log p1/p2

)ρ(
(1− p2) log p1/p2
(p1 − p2) log 1/p2

)
= exp

(
D

(
ρ

∥∥∥∥ 1/p1 − 1

1/p2 − 1

))
≤ pρ−11 .

Here D(r‖x) = r log r
x + (1− r) log 1−r

1−x is the Kullback-Leibler divergence. The
two inequalities are proven in the Appendix as lemma 1 and lemma 3. The first
bound comes from maximizing over α ∈ [0, 1], so in principle we might be able to
do better if κ = logn

log 1/p2
is close to an integer. The second bound is harder, but

the realization that the left hand side can be written on the form of a divergence
helps a lot, since those have known properties we can exploit. The bound is tight
up to a factor 2, so no significant improvement is possible.

Bringing it all together the expected query time is equal to the number of
tables we have to query plus the number of far points to inspect. Using equation
(??) we have:

bac+ dbe+ n(bacpbκc2 + dbepdκe2) ≤ (a+ b+ 1) + (ap1−α2 + bpα2 + 1)

= 2(a+ b) + 2

≤ 2nρ/pρ−11 + 2.

Similarly, recall that to succeed the data structure must be able to find a near
point when one exists. Recalling the previous computations and equation (??)
we have:

1− (1− pbκc1)bac(1− pdκe1)dbe ≥ 1− exp(−apbκc1 − bpdκe1)(1− pbκc1)−1

= 1− exp(−1) · 2
≥ 0.26.

Finally we can boost the success probability from 26% to 99% by repeating the
entire data-structure 16 times.

4 Conclusion

We have shown that using LSH tables with b logn
log 1/p2

c repetitions as well as with

d logn
log 1/p2

e can, when done carefully, reduce the query time of LSH from nρ/p1 to

nρ/p1−ρ1 , thereby guaranteeing sub-linear time.
From our experiments we have shown this to be an important practical as

well as theoretical problem, and may be part of an explanation to why LSH
sometimes underperforms its promises.

It remains an open problem whether it is possible to completely remove this
multiplicative dependency on p−11 which is curiously not needed when log 1/p2
divides log n.

References

1. Abboud, A., Rubinstein, A., Williams, R.: Distributed pcp theorems for hardness
of approximation in p. In: 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS). pp. 25–36. IEEE (2017)

2. Ahle, T.D.: Optimal las vegas locality sensitive data structures. In: 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS). pp. 938–949.
IEEE (2017)

3. Ahle, T.D., Knudsen, J.B.T.: Subsets and supermajorities: Optimal hashing-based
set similarity search. arXiv preprint arXiv:1904.04045 (2020)

4. Ahle, T.D., Pagh, R., Razenshteyn, I., Silvestri, F.: On the complexity of inner
product similarity join. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. pp. 151–164. ACM (2016)

5. Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., Schmidt, L.: Practical and
optimal lsh for angular distance. In: Advances in Neural Information Processing
Systems. pp. 1225–1233 (2015)

6. Andoni, A., Razenshteyn, I., Nosatzki, N.S.: Lsh forest: Practical algorithms made
theoretical. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms. pp. 67–78. SIAM (2017)

7. Bawa, M., Condie, T., Ganesan, P.: Lsh forest: self-tuning indexes for similarity
search. In: Proceedings of the 14th international conference on World Wide Web.
pp. 651–660 (2005)

8. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving. In: Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 10–24. SIAM (2016)

9. Broder, A.Z.: On the resemblance and containment of documents. In: Compression
and Complexity of Sequences 1997. Proceedings. pp. 21–29. IEEE (1997)

10. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. In: Proceedings of the thirtieth annual ACM symposium on Theory
of computing. pp. 327–336. ACM (1998)

11. Christiani, T.: Fast locality-sensitive hashing frameworks for approximate near
neighbor search. In: International Conference on Similarity Search and Applications.
pp. 3–17. Springer (2019)

12. Christiani, T., Pagh, R.: Set similarity search beyond minhash. In: Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017. pp. 1094–1107 (2017)

13. Christiani, T., Pagh, R., Thorup, M.: Confirmation sampling for exact nearest
neighbor search. arXiv preprint arXiv:1812.02603 (2018)

14. Christiani, T.L., Pagh, R., Aumüller, M., Vesterli, M.E.: Puffinn: Parameterless
and universally fast finding of nearest neighbors. In: European Symposium on
Algorithms. pp. 1–16 (2019)

15. Dahlgaard, S., Knudsen, M.B.T., Thorup, M.: Fast similarity sketching. In: 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). pp.
663–671. IEEE (2017)

16. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the thirtieth annual ACM symposium
on Theory of computing. pp. 604–613. ACM (1998)

17. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of massive data sets. Cambridge
university press (2020)

18. Mann, W., Augsten, N., Bouros, P.: An empirical evaluation of set similarity join
techniques. Proceedings of the VLDB Endowment 9(9), 636–647 (2016)

19. O’Donnell, R., Wu, Y., Zhou, Y.: Optimal lower bounds for locality-sensitive hashing
(except when q is tiny). ACM Transactions on Computation Theory (TOCT) 6(1),
5 (2014)

20. Razenshteyn, I., Schmidt, L.: Falconn-fast lookups of cosine and other nearest
neighbors (2018)

21. Wei, A.: Optimal las vegas approximate near neighbors in lp. In: Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 1794–1813.
SIAM (2019)

A Proofs of Inequalities

Lemma 1. Let p1, p2 ∈ (0, 1) and ρ = log 1/p1
log 1/p2

. Then for all α ∈ [0, 1] we have

f(α) =
p−1+α2 − pα2

(p−1+α2 − 1)pα1 + (1− pα2)p−1+α1

≤
(

(p1 − p2) log 1/p1
(1− p1) log p1/p2

)ρ(
(1− p2) log p1/p2
(p1 − p2) log 1/p2

)
.

Proof. We first show that f(α) is log-concave, which implies it is maximized at
the unique α such that f ′(α) = 0. Log-concavity follows easily by noting

d2 log f(α)

dα2
= −

(1− p1)(p1 − p2)p1+α2 (log 1
p2

)2

((1− p1)p2 + pα2 (p1 − p2))2
≤ 0.

Meanwhile

df(α)

dα
=

p1(1− p2)(p2/p1)α

((1− p1)p2 + pα2 (p1 − p2))2

[
(p1 − p2)pα2 log 1

p1
− (1− p1)p2 log p2

p1

]
,

which implies f(α) is maximized in

α = log
(1− p1)p2 log p2

p1

(p1 − p2) log 1
p1

/
log p2.

Plugging into f yields the lemma. Note that f(α) is not regularly concave as p1
and p2 gets small enough. Hence the use of log-concavity is necessary.

Next, we state a useful inequality, which is needed for the last proof.

Lemma 2. Let p, r ∈ (0, 1), then

1− 1− p
r
≤ p1/r ≤ pr

1− p(1− r)
.

Proof. We have d2

dp2 p
1/r = p1/r(pr)−2(1− r), so p1/r is convex as a function of p.

Since 1− 1−p
r is it’s tangent (at p = 1) we get the first inequality.

For the second inequality, define g(p) = p1/r/ pr
1−p(1−r) . Then g(1) = 1 and

g(p) is non-decreasing, since

g′(p) = p1/r(pr)−2(1− p)(1− r) ≥ 0.

This shows that for p ≤ 1 we have p1/r/ pr
1−p(1−r) ≤ 1, which is what we wanted

to prove.

Finally we show the following bound, which implies the inequality exp(D(ρ ‖ 1/p1−1
1/p2−1)) ≤

pρ−11 in the theorem:

Lemma 3. Let p, r ∈ (0, 1] and let x = 1/p− 1
1/p1/r−1 , then

D(r‖x) ≤ r log r
x ≤ (1− r) log 1

p , (3)

where D(r‖x) = r log r
x + (1− r) log 1−r

1−x .

Proof. Using the upper bound of lemma 2 it follows directly that x ∈ (0, r). This
suffices to show the first inequality of (??), since for x ≤ r we have 1−r

1−x ≤ 1 and
so the second term of D(r‖x) is non-positive.

For the second inequality, we note that it is equivalent after manipulations
to x ≥ rp1/r−1. Plugging in x, and after more simple manipulations, that’s
equivalent in the range to p1/r ≥ 1− 1−p

r , which is lemma 2. This finishes the
proof of lemma 3.

Note that it is somewhat surprising that the last argument in the proof of lemma 3
works, since if we had plugged the lower bound from lemma 2 directly into the
problem we would have had

r log r
x ≤ r log pr

p+r−1 ,

which is much weaker than what we prove, and is not even defined for p+ r < 1.

	On the Problem of p1-1 in Locality-Sensitive Hashing

