It is NP-hard to verify an LSF on the sphere

Thomas Dybdahl Ahle

March 2017

A locality sensitive filter system, LSF , on a sphere is a matrix $A \in \mathbb{R}^{n \times d}$ where the rows are vectors of approximately unit length. (It could for example have Gaussian $\mathcal{N}(0,1 / d)$ elements.) The LSF can be used to create a nearestneighbour data-structure on a set of points on the unit sphere $X \subseteq \mathcal{S}_{d-1}$, by creating a 'bucket' B_{a} for each row $a \in A$. For each $x \in X$ we add x to B_{a} if $\langle x, a\rangle \geq \tau$ for some constant τ. We say an LSF is 'correct' for a value r, $0<r<1$, if for all $x \in X$ and $y \in S_{d-1}$ with $\langle x, y\rangle \geq r$ there is an $a \in A$ such that $\langle x, a\rangle \geq \tau$ and $\langle y, a\rangle \geq \tau$. Intuitively an LSF is correct if two points, that are close to each other, are guaranteed to fall in a shared bucket.

An important problem is whether we can verify that an A is correct for a value r. In this note we show that such a verification is not possible in time polynomial in n, unless $P=N P$. In particular we show this for the case of a data structure with just a single point. That is $|X|=1$. The approach is inspired by [1].

Definition 1 (Problem 1: Verification). Given constants $0<\tau<r<1$, a vector $x \in S_{d-1}$ and a matrix A with $A x \geq \tau$, return a point $y \in S_{d-1}$ such that $A y<\tau$ and $\langle y, x\rangle=r$.

Importantly, if an LSF is correct for r, the above problem should fail for any x. On the other hand, if the LSF is not correct, the above problem will find a y that that proves it bad.

We show that the 3-Sat problem can be reduced to the verification problem.
Definition 2 (Problem 2: 3-Sat). Given n boolean variables, x_{i}, and m clauses on the form $(\neg) x_{i} \vee(\neg) x_{j} \vee(\neg) x_{k}$, determine if there is an assignment to the variables that make all clauses true.

We will reduce 3-Sat to the vertification problem with $r=1 / \sqrt{2}, \tau=\alpha / \sqrt{n}$, $\alpha=\sqrt{2 / 3} /(2-\sqrt{2})$ and $x=(1,0, \ldots, 0) \in \mathcal{R}^{n+1}$. Other values are also possible, but these are pretty typical for the values that would be used in practice. Here α was chosen such that $\alpha / \sqrt{2}+1 / \sqrt{6}=\alpha<\alpha / \sqrt{2}+3 / \sqrt{6}$.

TODO: Decide whether to use d or n.
For each clause $(\neg) x_{i} \vee(\neg) x_{j} \vee(\neg) x_{k}$ with $1 \leq i<j<k \leq n$ we define a row $a \in \mathbb{R}^{n+1}$. We set $a_{0}=\alpha / \sqrt{d}$ and $a_{i}=1 / \sqrt{3}$ if x_{i} is positive in the clause, and a_{i} if x_{i} is negative (\neg) we set $a_{i}=-1 / \sqrt{3}$. If x_{i} is not the the clause, we
set $a_{i}=0$. (Note that $\|a\|_{2}^{2}=1+\alpha^{2} / d \approx 1$, which is similar to what it would be with gaussian values.)

We further define rows $b_{i} \in \mathbb{R}^{n+1}$ for $1 \leq i \leq 2 n$ such that $b_{i, 0}=\alpha / \sqrt{d}$, $b_{2 i, 2 i+1}=1 / \sqrt{3}$ and $b_{2 i+1,2 i+2}=-1 / \sqrt{3}$. In total we get a matrix A with $m+2 n$ rows and $n+1$ columns. For all a and b we have $\langle a, x\rangle=\langle b, x\rangle=\alpha / \sqrt{d}=\tau$. (Note we don't quite have $\|b\| \approx 1$, but we could fix that by a $\sqrt{2 / 3}$ coordinate and 0 coordinates on the other vectors.)

Visually the different vectors look like this:

$$
\begin{aligned}
y & =(1 / \sqrt{2}, \pm 1 / \sqrt{2 d}, \ldots) \\
x & =(1,0, \ldots, 0) \\
a & =(\alpha / \sqrt{d}, 0, \ldots, \pm 1 / \sqrt{3}, \ldots, 0) \\
b & =(\alpha / \sqrt{d}, 0, \ldots, \pm 1 / \sqrt{3}, \ldots, 0)
\end{aligned}
$$

Theorem 1. The vertification problem for A, τ, r, x will find a counter example y if and only if the 3-Sat problem is satisfiable.
Proof. We first show that if the clauses are all satisfiable, we can find a y as by the verification problem. Let $x_{i} \in\{$ true, false $\}$ for $1 \leq i \leq n$ be an assignment satisfying the clauses. We let $y_{0}=1 / \sqrt{2}$ and $y_{i}= \pm 1 / \sqrt{2 n}$ where the sign is negative if x_{i} is true and positive if x_{i} is false.

This makes $\|y\|_{2}^{2}=1$ and $\langle x, y\rangle=1 / \sqrt{2}=r$. For each a in A we have $\langle y, a\rangle=\alpha / \sqrt{2 d}+\{-3,-1,1,3\} / \sqrt{6 d}$, depending on how many of the signs in a match those in y. Importantly, by the way y is build from an assignment satisfying the clause, at least once the signs differ. Hence $\langle y, a\rangle \leq \alpha / \sqrt{2 d}+$ $1 / \sqrt{6 d}=\alpha / \sqrt{d}=\tau$. Finally for each even i and $b=b_{i}$ in A, we have $\langle y, b\rangle=$ $\alpha / \sqrt{2 d} \pm 1 / \sqrt{6 d} \leq \alpha / \sqrt{d}=\tau$.

TODO: Make b a little bit smaller, so it is strictly smaller than τ, or the intersection with a larger.

In the other direction, we'll show that given a y from the verification problem, we can find a satisfying assignment for the 3-Sat problem.

First notice that $y_{0}=\langle y, x\rangle=1 / \sqrt{2}$. Then from the b rows, we have $y_{i} / \sqrt{3}+\alpha / \sqrt{2 d} \leq \tau$ and $-y_{i} / \sqrt{3}+\alpha / \sqrt{2 d} \leq \tau$ for $i \geq 1$. This implies for all $i \geq 1$ that $-1 / \sqrt{2 d} \leq y_{i} \leq 1 / \sqrt{2 d}$. Since $\|y\|_{2}^{2}=1$, the extreme values have to be achieved, hence $y_{i} \in\{-1 / \sqrt{2 d}, 1 / \sqrt{2 d}\}$.

Now for each clause, there is an $a \in A$ with corresponding signs. Since we have $\langle y, a\rangle=\alpha / \sqrt{2 d}+\{-3,-1,1,3\} / \sqrt{6 d} \leq \tau$ depending on the number of satisfying clauses, we must have the signs not matching at least once, meaning y satisfies the clause.

References

[1] Marko D Petković, Dragoljub Pokrajac, and Longin Jan Latecki. Spherical coverage verification. Applied Mathematics and Computation, 218(19):96999715, 2012.

