It is NP-hard to verify an LSF on the sphere

Thomas Dybdahl Ahle

March 2017

A locality sensitive filter system, LSF, on a sphere is a matrix $A \in \mathbb{R}^{n \times d}$ where the rows are vectors of approximately unit length. (It could for example have Gaussian $\mathcal{N}(0, 1/d)$ elements.) The LSF can be used to create a nearestneighbour data-structure on a set of points on the unit sphere $X \subseteq S_{d-1}$, by creating a 'bucket' B_a for each row $a \in A$. For each $x \in X$ we add x to B_a if $\langle x, a \rangle \geq \tau$ for some constant τ . We say an LSF is 'correct' for a value r, 0 < r < 1, if for all $x \in X$ and $y \in S_{d-1}$ with $\langle x, y \rangle \geq r$ there is an $a \in A$ such that $\langle x, a \rangle \geq \tau$ and $\langle y, a \rangle \geq \tau$. Intuitively an LSF is correct if two points, that are close to each other, are guaranteed to fall in a shared bucket.

An important problem is whether we can verify that an A is correct for a value r. In this note we show that such a verification is not possible in time polynomial in n, unless P = NP. In particular we show this for the case of a data structure with just a single point. That is |X| = 1. The approach is inspired by [1].

Definition 1 (Problem 1: Verification). Given constants $0 < \tau < r < 1$, a vector $x \in S_{d-1}$ and a matrix A with $Ax \ge \tau$, return a point $y \in S_{d-1}$ such that $Ay < \tau$ and $\langle y, x \rangle = r$.

Importantly, if an LSF is correct for r, the above problem should fail for any x. On the other hand, if the LSF is not correct, the above problem will find a y that that proves it bad.

We show that the 3-Sat problem can be reduced to the verification problem.

Definition 2 (Problem 2: 3-Sat). Given n boolean variables, x_i , and m clauses on the form $(\neg)x_i \lor (\neg)x_j \lor (\neg)x_k$, determine if there is an assignment to the variables that make all clauses true.

We will reduce 3-Sat to the vertification problem with $r = 1/\sqrt{2}$, $\tau = \alpha/\sqrt{n}$, $\alpha = \sqrt{2/3}/(2-\sqrt{2})$ and $x = (1, 0, ..., 0) \in \mathbb{R}^{n+1}$. Other values are also possible, but these are pretty typical for the values that would be used in practice. Here α was chosen such that $\alpha/\sqrt{2} + 1/\sqrt{6} = \alpha < \alpha/\sqrt{2} + 3/\sqrt{6}$.

TODO: Decide whether to use d or n.

For each clause $(\neg)x_i \vee (\neg)x_j \vee (\neg)x_k$ with $1 \leq i < j < k \leq n$ we define a row $a \in \mathbb{R}^{n+1}$. We set $a_0 = \alpha/\sqrt{d}$ and $a_i = 1/\sqrt{3}$ if x_i is positive in the clause, and a_i if x_i is negative (\neg) we set $a_i = -1/\sqrt{3}$. If x_i is not the the clause, we

set $a_i = 0$. (Note that $||a||_2^2 = 1 + \alpha^2/d \approx 1$, which is similar to what it would be with gaussian values.)

We further define rows $b_i \in \mathbb{R}^{n+1}$ for $1 \leq i \leq 2n$ such that $b_{i,0} = \alpha/\sqrt{d}$, $b_{2i,2i+1} = 1/\sqrt{3}$ and $b_{2i+1,2i+2} = -1/\sqrt{3}$. In total we get a matrix A with m+2n rows and n+1 columns. For all a and b we have $\langle a, x \rangle = \langle b, x \rangle = \alpha/\sqrt{d} = \tau$. (Note we don't quite have $||b|| \approx 1$, but we could fix that by a $\sqrt{2/3}$ coordinates and 0 coordinates on the other vectors.)

Visually the different vectors look like this:

$$y = (1/\sqrt{2}, \pm 1/\sqrt{2}d, \dots)$$

$$x = (1, 0, \dots, 0)$$

$$a = (\alpha/\sqrt{d}, 0, \dots, \pm 1/\sqrt{3}, \dots, 0)$$

$$b = (\alpha/\sqrt{d}, 0, \dots, \pm 1/\sqrt{3}, \dots, 0)$$

Theorem 1. The vertification problem for A, τ , r, x will find a counter example y if and only if the 3-Sat problem is satisfiable.

Proof. We first show that if the clauses are all satisfiable, we can find a y as by the verification problem. Let $x_i \in \{\text{true}, \text{false}\}$ for $1 \leq i \leq n$ be an assignment satisfying the clauses. We let $y_0 = 1/\sqrt{2}$ and $y_i = \pm 1/\sqrt{2n}$ where the sign is negative if x_i is true and positive if x_i is false.

This makes $||y||_2^2 = 1$ and $\langle x, y \rangle = 1/\sqrt{2} = r$. For each a in A we have $\langle y, a \rangle = \alpha/\sqrt{2d} + \{-3, -1, 1, 3\}/\sqrt{6d}$, depending on how many of the signs in a match those in y. Importantly, by the way y is build from an assignment satisfying the clause, at least once the signs differ. Hence $\langle y, a \rangle \leq \alpha/\sqrt{2d} + 1/\sqrt{6d} = \alpha/\sqrt{d} = \tau$. Finally for each even i and $b = b_i$ in A, we have $\langle y, b \rangle = \alpha/\sqrt{2d} \pm 1/\sqrt{6d} \leq \alpha/\sqrt{d} = \tau$.

TODO: Make b a little bit smaller, so it is strictly smaller than τ , or the intersection with a larger.

In the other direction, we'll show that given a y from the verification problem, we can find a satisfying assignment for the 3-Sat problem.

First notice that $y_0 = \langle y, x \rangle = 1/\sqrt{2}$. Then from the *b* rows, we have $y_i/\sqrt{3} + \alpha/\sqrt{2d} \leq \tau$ and $-y_i/\sqrt{3} + \alpha/\sqrt{2d} \leq \tau$ for $i \geq 1$. This implies for all $i \geq 1$ that $-1/\sqrt{2d} \leq y_i \leq 1/\sqrt{2d}$. Since $\|y\|_2^2 = 1$, the extreme values have to be achieved, hence $y_i \in \{-1/\sqrt{2d}, 1/\sqrt{2d}\}$.

Now for each clause, there is an $a \in A$ with corresponding signs. Since we have $\langle y, a \rangle = \alpha/\sqrt{2d} + \{-3, -1, 1, 3\}/\sqrt{6d} \leq \tau$ depending on the number of satisfying clauses, we must have the signs not matching at least once, meaning y satisfies the clause.

References

 Marko D Petković, Dragoljub Pokrajac, and Longin Jan Latecki. Spherical coverage verification. Applied Mathematics and Computation, 218(19):9699– 9715, 2012.